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1 Introduction

The ongoing vertical disintegration of electric utilities creates fundamental problems for the

electrical System Operator (SO). Under traditional regulation, the SO ordered the dispatch

of captive generators whose costs were known. In restructured markets, in contrast, the

SO takes bids from independent generators whose true costs may be unknown. Generating

firms generally possess accurate information about the structure of the market and the

algorithm that the SO uses to determine when and how much each generator will produce

(the ”dispatch algorithm”). Generators can be expected to use this information to adjust

their bids strategically in order to maximize profit, and evidence from California and other

markets indicates that they do. Thus, modern system designers and operators must possess

training in principles of market economics and applied game theory as well as electrical

engineering.

A growing academic literature has developed recently concerning the design of electricity

markets (see e.g. Wilson 2002 and Stoft 2002 for surveys and outlines of the major issues).

Regulatory authorities have taken a keen practical interest in this problem as well (FERC

2002). There has been some research about the use of bids to improve the performance

of the system in the very short run (e.g. Cardell 1997), but most work has concentrated

on day-ahead and real-time (five to 15-minute-ahead) energy markets, which have sufficient

time to clear. In contrast, the present research focuses on cost-minimizing in markets that

do not clear and require the intervention of a system operator to stay in balance.

Improving the efficiency of system operator interventions is of special interest for electricity

markets. There is currently considerable diversity in market design (Wilson 2002; FERC

2002), but most systems take bids from generators in both day-ahead and real-time mar-

kets. Market-clearing prices are then adjusted by location according to transmission losses

and constraints. Though increasingly sophisticated, electricity markets are not yet able to

respond quickly enough to prevent instability in real time, and they may never be. There-



fore, the SO generally obtains generation resources from ancillary markets for regulation

and reserve capacity to allow it to intervene to maintain balance. However, the efficiency of

the SO’s intervention is circumscribed by its ability to determine each generator’s cost. It

must rely on bids rather than direct knowledge of generation costs, and those bids are often

influenced by the desire of generators to exert market power.

Empirical evidences concerning strategic bidding of the generators were found by Wolfram

1998 on the power market of England and Wales. Theoretical aspect of generators’ market

power were examined by Joskow 2000 and Borenstein 2000. Joskow examines effects of

transmission rights on the market power of the generators and Borenstein looks at the

transmission capacity of the line.

Electricity markets are prone to failure and manipulation in times of stress, as in California

in 2000. Electrical energy can not be stored economically, and the system will quickly

become unstable if there is either a surplus or shortage. Demand for electricity is volatile

and unresponsive to short-term price changes. Supply is also unresponsive to price changes

when the system is producing near capacity, and in extreme (but realistic) cases supply

and demand may not even intersect. Also production and delivery may be constrained by

physical limitations of the transmission system, and these constraints vary from moment to

moment and location to location across the transmission grid. It is not uncommon for certain

portions of the grid to become ”islanded” or isolated from the rest of the system. The SO

must therefore continually adjust production to follow shifts in demand, both systemwide and

within the transmission-constrained islands. Incremental demand may have to be satisfied

by just a few generators who may have considerable market power and who will not wish to

reveal their production costs. Price caps are commonly used to reduce price volatility, but

they have the side effect of reducing the efficiency of market price signals.

Many electrical systems therefore experience significant periods during which price adjust-

ments are either too slow or constrained by a regulatory cap, and quantity is fixed by the

inelasticity of demand. The dispatch choices of the SO during these periods have important
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long-run implications, because the high prices experienced during these periods are required

to finance crucial high-cost, quick-response generation facilities. Therefore, it is crucial that

the SO have a mechanism to identify and dispatch the most efficient generation resources,

at the very times when simple bidding systems may be most failure prone.

In this paper we analyze an electricity market in which a SO who wishes to minimize cost

must satisfy an exogenously determined electricity load at a fixed price. The SO is assumed

to know only the generators’ bids, rather than their true costs. Generators are assumed to

know their own costs, each others’ bids, and the SO’s dispatch algorithm. We find that no

set of Nash equilibrium bids exist for such a market, and that generators’ bids will diverge

widely from actual marginal costs. We propose a simple tariff mechanism that is incentive-

compatible in the sense that it induces bidding that will allow the SO to minimize the total

cost of production, even in the presence of transmission constraints. Interestingly, these bids,

though efficient, diverge from true marginal cost.

Throughout the paper, for purposes of exposition we focus on a two-generator market with

quadratic cost functions, but we also show that the major results hold for any number of

generators, with general convex cost functions. We focus on the problem of overcapacity

(i.e., the SO must choose among generators who wish to produce more in aggregate than the

load requires), but a symmetric result occurs if insufficient voluntary generation is available

at the fixed price.

The paper’s structure is as follows. In the next section we will introduce the market model,

including market participants and rules of the game. In the following section, we show that

the generators’ bids will depart from true costs, and demonstrate the nonexistence of a Nash

equilibrium in the model without tariffs. Next, we introduce the tariff mechanism and show

that it will create a Nash equilibrium in the market, which we demonstrate to be efficient.

Finally, we briefly discuss implementation issues.
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2 The Model

Some number n independent generators compete on the energy market. (For expositional

simplicity, we discuss the case where there are only two generators, designated G1 and G2.)

We assume that the generators do not cooperate with each other when they make decisions.

Each generator is paid a price, P , for output, determined exogenously, and not affected by

either the bid or the quantity that the generator produces. Consumers create an exoge-

nous load Q on the system, which must be satisfied in real time. The System Operator

determines the production level of each generator, using an algorithm that minimizes the

total “bidded” cost of serving the load, treating the generators’ bids as though they were

the actual costs of production. The SO knows the market demand of energy, and the bids

and production capacity of each generator, and it takes into account the rational response

of generators to its dispatch algorithm.
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Figure 1: Power Market system.

Thus, although generators take market price and quantity as fixed, their bids determine the

quantity of energy that the SO allows them to produce. This approximates the situation faced
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in real time by providers of capacity reserve services, or the situation faced by generators in

an isolated or islanded system subject to a binding price cap.

Generator’s problem. Each generator wants to produce at the level xi that maximizes its

profit, π(xi) = Pxi−C(xi), where C(·) is the cost function of the generator. For expositional

purposes we assume a simple quadratic cost function1

Ci(xi) = αix
2
i + βi.

The generators’ bids are determined strategically, and may differ from actual costs. Each

generator’s bid is a function Bi(xi), assumed again for expositional purposes to be quadratic:

Bi(xi) = aix
2
i + bi

From the SO’s operational point of view, the difference between αi and ai determines the

effective difference between a generator’s true and reported cost. By manipulating ai the

generator can influence the SO’s dispatch decision. The ultimate purpose of the successful

bid for a generator is to induce the SO to assign him the level of production that maximizes

his profit. For the simple, two-generator quadratic case, the solution of the generator’s

problem is

x∗
i (P, αi) =

P

2αi

i = 1, 2

where x∗
i (·) is generator i’s profit-maximizing output level. Therefore, a generator will at-

tempt to craft a bid ai such that the SO will assign him to production level x∗
i .

The System Operator’s Problem.

The SO monitors the load Q, and determines how much power should be supplied by each

generator, based on their bid functions B(·). Formally, the SO minimizes the overall bidded

cost of production, while satisfying market demand.

1Quadratic cost functions are commonly assumed by electrical engineers in practice, though the engineer-

ing cost function typically also contains a term linear in output. Inclusion of a linear term would not affect

the outcome of the analysis, though it would clutter the mathematical expressions.
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min
{x1,x2}

B1(x1) + B2(x2)

s.t. x1 + x2 = Q

The solution to this optimization problem provides an algorithm for the SO to use in allo-

cating the market load Q among generators. For the two-generator case, the minimization

problem is as follows:

Cost(x1) = a1x
2
1 + b1 + a2(Q − x1)

2 + b2

Setting the first derivative of bidded cost with respect to x1 equal to zero and solving for x1,

x̂1(a1, a2) =
a2Q

a1 + a2

x̂2(a1, a2) =
a1Q

a1 + a2

where x̂i is the amount of power that the SO will assign generator i to produce.

3 Divergence of Bids from Actual Cost, and Market

Instability

It is clear that if both generators were to bid their true marginal costs α, the SO will achieve

a socially optimal (cost-minimizing) allocation of output. However, each generator will seek

to bid strategically to maximize his own profit, regardless of society’s welfare. In general, the

sum of the profit-maximizing levels of output for all generators will virtually never exactly

satisfy the load, i.e., Q 6=
∑

i x̂i. We will therefore examine the case where Q < x̂1 + x̂2,

i.e., where the local system has a surplus of capacity. (Analogous results are obtained when

there is insufficient capacity, Q > x̂1 + x̂2). Whenever there is excess capacity, the SO will

force at least one generator to produce less than it would like. In response that generator

will reduce its bid in order to increase his production share and consequently profit.

In case of two generators (G1 and G2) it is easy to demonstrate that the generators’ bids

will diverge from actual cost. Suppose that G2 bids its actual costs, a2 = α2. Anticipating
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this bid, and knowing the SO’s allocation algorithm, G1 will bid a1 such that the SO will

assign G1 to produce its own-profit-maximizing quantity. Formally, G1 will determine his

bid parameter a1 by solving the SO’s system bidded cost minimization problem conditional

on a2 = α2. Setting x̂i = x∗
i ,

P

2α1

=
α2Q

a1 + α2

and solving for G1’s bid a1, yields

a∗
1 =

2α1α2Q

P
− α2

where a∗
1 is the profit-maximizing bid for G1, conditional on G2 bidding α2. The bids will be

collected by the SO, who will assign G1 to produce its profit maximizing amount x∗
1, leaving

Q − x∗
1 for G2. Thus, the profit-maximizing bid for G1 will diverge from its true cost.

Unfortunately for G1, G2 will also bid strategically. In fact there will be no stable market

equilibrium, as each generator seeks to underbid the other ad infinitum. (In the case of

insufficient capacity, the bids will increase ad infinitum.) This situation arises because there

is no penalty for bidded cost deviating from actual cost. Formally, the system of simultaneous

bid response equations























P

2α1

=
a2Q

a1 + a2

P

2α2

=
a1Q

a1 + a2

does not have a solution unless x∗
1 + x∗

2 = Q, and therefore the market will fail to provide

useful cost information to the SO. Apart from the bids, the SO has no independent knowledge

of actual costs, and so it will be unable to achieve an efficient allocation of production. To

remedy this situation, the SO will need to introduce some additional incentive to induce

bidders to provide better cost information.

7



4 Tariffs

Without knowledge of actual costs, how can the SO detect, and penalize, strategic bidding

that deviates from actual costs? It turns out to be sufficient to introduce a tariff that applies

to the difference between the bids and the market price. In the case of overcapacity, this

tariff can be thought of as a tax on reported profit. Each generator will face a tradeoff. On

the one hand, by bidding low the generator can induce the SO to increase its production

share. On the other hand, a lower bid implies lower reported costs and consequently higher

reported profit and a higher tariff payment. In our model we assume that all generators pay

the same flat tariff rate t.

The Generator’s Problem

For expositional purposes, assume that there is system overcapacity at the current price. If all

generators in this simple market pay the same fixed tariff rate t, then t[Pxi(ai)−Bi(x(ai), ai)]

is Gi’s tariff payment, and the net (after-tax) profit for Gi is

πi(ai) = Pxi(ai, a−i) − Ci(xi(ai, a−i)) − t[Pxi(ai, a−i) − Bi(xi(ai, a−i), ai)]

where a−i is a vector of other generators’ bids.

To find the profit-maximizing bid, take the first derivative with respect to ai and set it equal

to zero:

π′
i(ai) ≡ P

∂xi(·)

∂ai

−
∂Ci(·)

∂xi(·)

∂xi(·)

∂ai

− t[P
∂xi(·)

∂ai

−
∂Bi(·)

∂xi(·)

∂xi(·)

∂ai

−
∂Bi(·)

∂ai

] = 0.

Dividing by
∂xi(·)

∂ai

6= 0

π′
i(ai)

x′
i(ai)

≡P −
∂Ci(·)

∂xi(ai)
− t[P −

∂Bi(·)

∂xi

−
∂Bi(·)

∂ai

1

∂xi/∂ai

] = 0 (1)

In the two-generator case with quadratic costs and bids, the profit-maximizing level of output

is

The System Operator’s Problem.
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The SO seeks to minimize the bidded cost of satisfying exogenous market demand Q by

allocating the required output among the bidders, taking into account the bidders’ strategic

response to the allocation algorithm.

min
{x1...xN}

∑n

i=1 Bi(ai(xi), xi)

s.t.
∑n

j=1 xj = Q

Solving the first-order conditions for bidded-cost minimizing yields a system of differential

equations

∂Bi(ai(xi), xi)

∂ai(xi)

∂ai(xi)

∂xi

+
∂Bi(ai(xi), xi)

∂xi

= λ i = 1, 2 . . . N (2)

n
∑

j=1

xj = Q

where ∂ai(xi)
∂xi

is the change in the generator i’s bid when the SO increases its output by 1

unit, and λ is a Lagrange multiplier. Because λ is a constant, the condition is equivalent to

setting the marginal bidded costs equal to each other across all generators.

∂Bi/∂ai

∂xi/∂ai

+
∂Bi

∂xi

=
∂Bj/∂aj

∂xj/∂aj

+
∂Bj

∂xj

i, j = 1, 2 . . . N

subject to
n

∑

j=1

xj = Q.

The solution of this system of differential equations yields the dispatch function xi(a) for

each generator. Dispatch functions depend on bids rather then true costs and are common

information for all generators. Bearing in mind all the dispatch functions, each generator

adjusts its bid so as to maximize its own profit function. The set of bids {a1, a2, . . . aN}

at which no generator can improve its profit by changing its own bid is called the Nash

Equilibrium. The following section demonstrates that the Nash Equilibrium allocation is

efficient 2.
2Existence of the solution for the well-behaved bid functions is shown in Mathematical Appendix
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5 The Efficiency of Nash Equilibrium

The simple tariff induces a stable equilibrium set of bids in the market, but a stable NE

is not necessarily efficient. The system operator does not know the generators’ costs, so it

is not obvious that minimizing the bidded “cost” of serving the load will also minimize the

actual cost of doing so. However, in this case it can be shown that the NE does produce

the same efficient allocation of production among the generators as would occur if the true

marginal costs were known.

Rearranging the generator’s profit-maximization condition from (1) yields the following

profit-maximizing equilibrium relationship between bids and true marginal costs for all gen-

erators:

[P −
∂Ci(·)

∂xi

]/t − P =
∂Bi(·)

∂xi

+
∂Bi(·)/∂ai

∂xi/∂ai

i = 1, 2 . . . N t 6= 0 (3)

On the right-hand side of the above equation is the marginal effect on bidded cost of a unit-

change in the output of generator i. (The first term is the anticipated strategic change in ai

to the dispatch level xi, while the second term is the change in the bid function due to the

change in xi, holding ai constant.) Note that when the SO’s cost minimization condition (2)

is satisfied (i.e., in Nash Equilibrium), this right-hand-side marginal effect will be the same

across all bidders, implying that

[P −
∂Ci(·)

∂xi

]/t − P = [P −
∂Cj(·)

∂xj

]/t − P i, j = 1, 2 . . . N t 6= 0

which implies that in Nash Equilibrium true marginal costs will be equal across all generators:

∂Ci(·)

∂xi

=
∂Cj(·)

∂xj

i, j = 1, 2 . . . N

n
∑

j=1

xj = Q
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Equality of true marginal costs of the generators subject to the production constraint solves

following true cost minimization problem.

min
{x1...xN}

n
∑

i=1

Ci(xi)

s.t.
n

∑

j=1

xj = Q

which is efficient.

Mathematically, efficiency condition is achieved when cost and bid functions are continuous

differentiable and t 6= 0. These restrictions are innocuous for the quadratic cost functions

(or any other well-behaved cost function) and t ∈ (0; 1].

6 Examples of Cost functions for two generators

Linear Costs

A market with two generators with linear cost and bid functions provides a simple example

that illustrates the function of the efficient tariff. Suppose that the cost and bid functions

of generator i (Gi) are, respectively,

Ci = αixi

and

Bi = aixi.

For expositional simplicity, assume that either of the generators could supply the entire

market on its own, and either would profit from doing so (i.e., P > ai). (This is a reasonable

assumption, as price caps are generally set above marginal production costs.) Therefore, the

SO’s task is simply to use the bid parameters ai to determine which generator has the lower

cost parameter αi, and allocate all production to that generator. If there is no tariff, the

profit function of Gi is

πi = Pxi − αixi
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and there will be no Nash equilibrium because each generator will attempt to underbid the

other. Because the payment is fixed by the market price, the bids will decrease without

bound.

If, on the other hand, the SO institutes a tariff rate t on the winner’s apparent profit, then

the winner’s actual profit will be

πi = Pxi − αixi − t(Pxi − aixi)

Suppose that α1 < α2, and that therefore G1 is the efficient producer. In Nash equilibrium,

each player bids ai that maximizes its own profit, given the other generators’ actual bids.

If the price is fixed, then G1’s true profit for any production level will always exceed G2’s

profit, because G1’s costs are lower. From the profit function, it is apparent that Gi obtains

positive economic profit if and only if

ai > (1/t)[αi − (1 − t)P ].

Because α1 > α2, there will always exist bids that would yield a positive profit for G1,

but a negative or zero profit for G2. There can be no Nash equilibrium, therefore, where

the higher-cost generator G2 wins the bid. Instead, Nash equilibrium in this simple market

occurs where

a2 = (1/t)[α2 − (1 − t)P ]

and

a1 = (1/t)[α2 − (1 − t)P ] − ε

where ε is the smallest increment allowed between bids. G1 is satisfied with this outcome

because it is allowed to produce the amount that maximizes its profit, and a higher bid

would put it at risk of losing to G2. G2 is also satisfied, because it is breaking even, and if

it lowered its bid below G1’s bid it would be producing at a loss.

Note that the market result is efficient, and therefore the SO is satisfied, regardless of the

regardless of the level of t. In fact, changes in t will not even affect the tariff collected in

the linear case. Substituting the bid into the profit function (and neglecting ε), the tariff

collected in this simple case will be (P − α2)Q, regardless of the tariff rate t. Also, G1’s
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profit will be the same as in a second-price or Vickrey auction: (α2−α1)Q. Changes in t will,

however, affect the NE levels of the bids. Bids will even become negative if tP < (P − α2),

but the tariff will create a lower limit to their decline.

Quadratic Costs

A more realistic but complicated case is that of two generators with quadratic costs and bids

Ci(xi) = αix
2
i + βi i = 1, 2

where αi is a marginal cost parameter and βi represents fixed costs.

Bi(xi) = aix
2
i + bi

If Generator 2 (G2) bids a2, Generator 1 (G1) will adjust its bid a1 to maximize its own

profit.

a1 = arg max[π1(a1, a2)] (4a)

Similarly, G2 will adjust its own bid a2, so as to maximize its own net profit conditional on

G1’s bid of a1 and SO assigned production level x2(a1, a2). Thus,

a2 = arg max[π2(a1, a2)] (4b)

In Nash equilibrium, neither generator will be able to improve its net profit by changing its

bid. Operationally, we may substitute the expressions for x1(a1, a2) and x2(a1, a2) derived

from SO’s problem (2) into (4a) and (4b) to define conditions under which Nash equilibrium

is obtained.

The Nash Equilibrium (NE) for this market occurs where bids a1 and a2 solve the following

system of equations:



























P − 2α1x1(a1, a2) − t[P − 2a1x1(a1, a2) −
x2

1(a1, a2)

∂x1(a1, a2)/∂a1

] = 0

P − 2α2x2(a1, a2) − t[P − 2a2x2(a1, a2) −
x2

2(a1, a2)

∂x2(a1, a2)/∂a2

] = 0
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where x1(·) and x2(·) are found endogenously by SO as a solution for overall bid minimization

problem.

min
{x1...xN}

∑n

i=1 Bi(a(xi), xi)

s.t.
∑n

j=1 xj = Q

The SO’s problem reduces to the system of non-linear differential equations described in the

above section where x1(·) and x2(·) are unknown functions.

It is useful to map the NE solution in terms of response functions in a1, a2 space, as shown in

Figure 2. The response function R1(a2) gives the bid, a1, that would maximize Generator 1’s

net profit if Generator 2 were to bid a2. Correspondingly, R2(a1) is the best response of the

second generator given the bid a1 of the first generator. The point of intersection represents

the NE solution as defined above. At this point, each generator is getting as much profit

as possible, given the other’s bid. In other words, at this point any increased revenue that

either generator would get by decreasing its bid is just balanced by the additional tariff it

would have to pay.
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Figure 2: Nash Equilibrium and Transitional Dynamics.
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Dynamic analysis shows that if cost functions are convex then the NE is stable; i.e., that any

movement away from NE will automatically create incentives that move the generators back

to NE. In Figure 2, the arrows show these dynamics. For example, if G1 sets a1 = 5, then

G2 will respond by increasing a2 to approximately 6.5. Because of G2’s higher bid, the SO

will assign G1 to produce more (and pay more tariff) than G1 had hoped, which will induce

it to raise a1 some more, which will reduce its tariff. This higher bid by G1 will cause the

SO to assign more output (and therefore a higher tariff payment) to G2 than it had planned

on, which will induce G2 to raise its bid, and so on.

This result is also efficient. To see the efficiency of the NE substitute the SO bid minimization

condition (2) in the profit function of both generators



















P − 2α1x1(a1, a2) − t[P − λ] = 0

P − 2α2x2(a1, a2) − t[P − λ] = 0

x1 + x2 = Q

⇒







2α1x1(·) = 2α2x2(·)

x1 + x2 = Q
⇔







∂C1(x1)
∂x1

= ∂C2(x2)
∂x2

x1 + x2 = Q

NE produces an efficient production level

x1(Q, aNE
1 , aNE

2 ) =
α2Q

α1 + α2

x2(Q, aNE
1 , aNE

2 ) =
α1Q

α1 + α2

as in the cost minimization problem when both G’s bid true marginal costs.

7 Conclusions

Information flow in electricity markets is increasingly decentralized, yet the importance of

efficient operation is undiminished. Often the system operator must make a dispatch decision

based on bids rather than costs, and will need to serve a fixed load at a price fixed by

regulatory price caps. The tariff mechanism we propose is simple to implement, because the
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system operator does not need to know the true parameters of the generators’ cost functions.

Instead, the SO needs to know only the system load and the generators’ bids.

Despite this simplicity, the tariff has very strong short-run efficiency implications. It allows

the operator to identify the least-cost producers, and thereby minimize the total cost of

production. Generators obtain a profit equal to the difference between price and the cost of

the marginal producer. Remarkably, efficiency does not require a large number of competitive

bidders; the equilibrium bids produce a fully efficient outcome even in a duopoly.

This paper has introduced the tariff system and demonstrated its efficiency, but it has not

explored interesting questions related to its long-term implications. Imposing an efficient

tax has the side benefit of generating revenues, which could be used to finance transmission

system improvements, pay startup costs of generators, or defray other costs of system man-

agers, in much the way that system charges and transmission tariffs do in current systems.

The extraction of tariff revenues will have obvious implications for the profitability of the

industry, and for the level of investment that it can attract. Price and quantity constraints

typically occur at peak loads and times of system stress, which are precisely the times that are

crucial for collecting the revenues needed to finance large-scale capital investment. The tariff

mechanism may be an effective tool for balancing efficiency and equity while maintaining

system stability when the system is both stressed and constrained.
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8 Mathematical Appendix

Existence and Uniqueness of Nash Equilibrium

The solution to the SO’s cost-minimization problem can be represented by the system

∂Bi(ai(xi), xi)

∂ai(xi)

∂ai(xi)

∂xi

+
∂Bi(ai(xi), xi)

∂xi

= λ i = 1, 2 . . . N (5)

represents N independent non-linear differential equations of the first order. Because the

bid depends on the bid parameter, i.e.,

∂Bi(·)

∂ai

6= 0

We can, without loss of generality, rewrite the equation in the form:

∂ai(xi)

∂xi

= a′
i = g(ai, xi) i = 1, 2 . . . N

where

g(ai, xi) ≡
λ − ∂Bi(ai(xi),xi)

∂xi

∂Bi(ai(xi),xi)
∂ai(xi)

Assuming that all functions and their partial derivatives are continuous in the rectangle

(ai ≤ ai ≤ ai ; xi ≤ xi ≤ xi), there exists a unique solution ai = φ(xi) of the initial value

ai(xi0) = ai0. (See Boyce, 1996).

Assuming that vector (ai ; xi) ≥ 0 ∀ i there exists a positive vector of bids (a1, a2, ...aN ) ≥ 0

and a positive production vector (x1, x2, ...xN ) ≥ 0 that solves the SO’s problem.

17



9 References

Boyce W.E., Diprima R.C., (1996), “Elementary Differential Equations”, Wiley & Sons Inc.,

New York, Chichester, Brisbane, Toronto, Singapore, 6th edition, 1996, p.41

Borenstein S., Bushnell J, Stoft S, (2000) “ The competitive aspects of transmission capacity

in a deregulated electricity industry”. RAND Journal of Economics Vol. 31, No. 2 Summer

2000 pp.294-325

Cardell, Judith B (1997), “Market Power and Strategic Interaction in Electricity Networks”.

Resource and Energy Economics v19, n1-2 (March 1997): 109-37

Federal Energy Regulatory Commission (FERC) (2002) Notice of Proposed Rulemaking,

“Remedying Undue Discrimination through Open Access Transmission Service and Standard

Market Design.” Docket No. RM01-12-000, July 31, 2002

Joskow P, Tirole J, “Transmission rights and market power on electric power networks”,

RAND Journal of Economics Vol. 31, No. 3 Autumn 2000 pp.450-487

Oren, Shmuel (1997) “Economic Inefficiency of Passive Transmission Rights in Congested

Electricity Systems with Competitive Generation”. The Energy Journal, Vol. 18, NO. 1-

1997

Stoft, S (2002): Power System Economics: Designing Markets for Electricity. NY: Wiley-

IEEE Press

Wilson Robert (2002), “Architecture of Power Markets” Econometrica, Vol. 70 NO.4- July.

Roth, Alvin (2002)“The Economist as Engineer: Game Theory, Experimentation, and Com-

putation as Tools for Design Economics” Econometrica, Vol. 70 NO.4- July,

Hogan, William (1997) “A Market Power Model with Strategic Interaction in Electricity

Networks” The Energy Journal, Vol. 18, NO.4-

Hogan, William (1992) “Contract Networks for electric power transmission”. The Energy

Journal,

Stoft Steven (1992) “Financial Transmission Rights Meet Cournot: How TCC Curb Market

18



Power” The Energy Journal.

Willems Bert (2002) “Modelling Cournot Competition in an Electricity Market with Trans-

mission Constraints”. The Energy Journal, Vol. 23 No. 3

Wolfram Catherine, “Strategic bidding in a multiunit auction: an empirical analysis of bids

to supply electricity in England and Wales”. RAND Journal of Economics Vol. 29, No. 4,

Winter 1998 pp.703-725

19


