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Abstract  

Based on experience of the Norwegian electricity distribution sector, this study examines the postulation 

that change to incentive regulation has had a positive effect on efficiency and productivity growth in the 

industry. A parametric input distance stochastic frontier is used to specify the production technology. It is 

econometrically estimated using true fixed effects techniques by Greene (2005a, b) to generate technical 

efficiency scores and productivity growth rates for a panel dataset spanning 2004-2012. Malmquist 

productivity index is parametrically decomposed into efficiency change, technical change and changes in 

scale to explore the sources of changes in productivity. Compared to Miguéis et al. (2012), Edvardsen et 

al. (2006) and Førsund and Kittelsen (1998), this study has two advantages (1) uses a dataset that spans 

two regulatory regimes allowing estimates to provide a comparison of performance before and after a 

change in regulation (2) effects of both unobserved and observed heterogeneity in the operating 

environment are controlled and accounted for. The results show that overall productivity growth and 

technical efficiency improved significantly but scale efficiency improvements are not significant. The main 

conclusion is that technical change with significant embodied effects contributes more to productivity 

growth. Further, the results seem possibly be supported by Porter’s hypothesis and regulation seems 

relatively more effective on lower performing distribution operators. 

Key words: incentive regulation; productivity growth; input distance function; stochastic frontier analysis; 

electricity distribution 
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1.0 Introduction  

The electricity industry has undergone a restructuring process the last 25 years. Competition has been introduced 

among generators and often also among retailers. System operation, transmission and local distribution are viewed 

as natural monopolies and various regulatory models and schemes have been put in place. The aims of imposing 

regulations on electricity distribution and regularly reviewing regulatory policies is to protect consumers from 

market power and ensure sustained improvements in, efficiency, productivity growth and quality of services.  

Regulation of electricity distribution in  Norway dates back to as early as 1990 when the energy sector was 

reformed  (Royal Ministry of Petroleum and Energy 1990). The Norwegian Water Resources and Energy 

Directorate (NVE) was mandated to set policies aimed at regulating electricity distribution utilities and reviewing 

these policies every five years. In1991, NVE introduced rate-of-return on capital regulation, and in 1997  brought 

on board revenue and price cap regulation  which were later anchored in efficiency benchmarking based on Data 

Envelope Analysis (DEA) (Førsund & Kittelsen 1998). With time, more considerations of incentives have been 

integrated into the regulatory framework of the distribution utility operators (DSOs) for better cost reduction without 

compromising the quality and security of supply. The current incentive regulation (IR) for calculation of revenue 

caps came into force on 1st January 2007 and was due for revision in 2011. However, NVE opted to maintain the 

same principles for calculating revenue caps and only revised the benchmarking model used for computing cost 

norms. Suffice to note that the current benchmarking model is tuned to account for data on heterogeneity in 

conditions under which DSOs operate like geography, climate and structural conditions.  

Under the current regulation(s), the regulator does not set the price but rather puts a cap on the recoverable 

revenue which is determined by the computed base costs and cost norm1(Nordic Energy Regulators 2011). The cost 

norm is anchored on benchmark scores and is given a greater weight in computing the revenue cap. The argument 

                                                           
1 Revenue cap is computed by *

1
0.4 0.6

t t t
RC C C


  . 

t
RC is revenue cap determined by NVE in year t, 

1t
C


is the cost base 

for the DSO lagged two years and *

t
C is the cost norm -efficiency score multiplied with base cost-computed for year t 

considering depreciation, inflation and energy losses. Efficiency scores are computed by DEA since 1998, two stage DEA in 

2010 i.e. DEA at first stage and then regression. Flexible semi-parametric methods based on panel data are being introduced 

(Nordic Energy Regulators 2011). 

 

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDcQFjAB&url=http%3A%2F%2Fwww.nve.no%2Fen%2F&ei=a5sjUufdMZHLswaNmYDIBg&usg=AFQjCNEEHe5frU90ZYtiJNckFyDzzEmZcA&bvm=bv.51495398,d.Yms
https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDcQFjAB&url=http%3A%2F%2Fwww.nve.no%2Fen%2F&ei=a5sjUufdMZHLswaNmYDIBg&usg=AFQjCNEEHe5frU90ZYtiJNckFyDzzEmZcA&bvm=bv.51495398,d.Yms
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for higher weight on the cost norm is to provide incentives for effective management, utilisation and development 

of the network. Rungsuriyawiboon and Coelli (2004) observe that IR inspires managers to reduce costs at rates 

higher than allowable and recoverable rates because it allows the firm to retain any extra profit earned as a result. 

Hence, IR provides more incentives for cost reduction and technological innovations which reflect into efficiency 

improvements and productivity growth. 

This study aims at finding empirical evidence in support of the hypothesis that incentive regulation methods 

have had positive efficiency and productivity effects on the Norwegian electricity distribution utilities. It uses panel 

data on 118 electricity distribution utility operators as reported to the regulation authority for 9 years 2004-2012. 

We are able to compare performance across regulatory regimes because data contains at least three yearly data 

points for which each DSO was exposed to different regulatory regimes.  

We further investigate the sources of productivity growth in the Norwegian electricity distribution industry. This 

is done by parametrically decomposing total factor productivity change (TFPC) into change in technical efficiency 

(CTE), technical change (TC) and change in scale (SC). We also compare the estimates of these components across 

different regulatory regimes to establish if there is any evidence of the effect of incentive regulation and change in 

regulatory regime. In reference to environmental regulation, Porter (1991,1996) makes an interesting argument that 

firms benefit from tight regulation. He argues that “stronger regulation stimulates technological innovations which 

by enhancing productivity, increases firm’s private benefits”. With panel data and parametric methods, we are able 

to further disentangle embodied technical change from firm specific technical change which enables us to determine 

the productivity effects arising from innovations.  

The most recent notable study about productivity growth in the Norwegian electricity distribution is by 

Edvardsen et al. (2006) who use index number and nonparametric DEA methods on a panel covering 8 years 1996-

2003 to estimate productivity growth indices. In addition to using an up to date dataset 2004-2012 that covers the 

current regulatory regime, this study differs by making the following contributions: 

We implement a stochastic frontier approach to benchmarking and parametrically decompose total factor 

productivity. Most studies conducted on the Norwegian electricity distribution relating to performance 

benchmarking as a basis for IR use DEA possibly because NVE has not adopted SFA in their regulatory model. 
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Hence, these studies suffer a disadvantage because DEA fails to separate noise from inefficiency. With SFA, we 

are able to easily treatment measurement errors and test hypothesis both parameters and functional form restrictions 

(Pantzios et al. 2011). In flexible functional forms like translog, hypothesis testing help to specify parsimonious 

models to find out the existence of significant scale effects, technical change, and time-varying inefficiency etc. We 

exploit the advantages associated with panel data which has been accumulated on regulated DSOs. As noted by 

Kumbhakar et al. (2012), with panel SFA we are able to account for both observed and unobserved heterogeneity 

and hence make consistent estimation of both technology and efficiency parameters. Our input distance SFA model 

is estimated by maximum likelihood estimator based on the true fixed effects model (Greene 2005a),due to its 

ability to account for observed and an observed heterogeneity (Greene 2004; Greene 2005b).  

This study proceeds with discussion about Norwegian electricity distribution in section two, followed by model 

specification, methods for estimation, data description, results and conclusions in sections three, four and five 

respectively.  

2.0 Electricity distribution Norway 

Across the Nordic countries electricity grids are managed in a three level subdivision which include; distributional 

grid with voltage up to 22kv, regional grids handling up to between 33KV and 132KV and central grid containing 

high voltage lines of up to 420KV (Nordic Energy Regulators 2011). In Norway the central grid is owned and 

managed by TSO) called Statnett. Regional and distribution grids are managed by DSOs of differing sizes serving 

differing numbers and densities of customers. All DSOs are managed as private businesses much as majority are 

owned by municipalities or local governments. The largest DSO is Hafslund Nett AS which serves Oslo area holding 

20% of the market share. It is worth noting that most of the biggest DSOs are concentrated in urban areas taking a 

total market share of approximately 51%, the average market share per DSO across the country is 0.8%. By 2009, 

142 and 91 companies were managing distributional and regional grids respectively but a good number of 

companies do operate both (Nordic Energy Regulators 2011; Robles et al. 2011). 
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3.0 Theoretical Model 

This paper models a modified cost function specified based on a multiple inputs and multiple outputs distance 

function with an input-orientation (Shepherd 1953;1970). Distance function specification is preferred to using a 

traditional cost function because of limited availability of input price data which is a common case with studies on 

electricity and other utility distribution (Coelli et al. 2013). Using a cost function requires making a strong 

assumption of cost minimization which is not always the case with utility sectors that face political influence and 

regulation. Distance functions are either output or input oriented distance functions and both are suitable for 

estimating production technologies involving multiple outputs and inputs (Coelli et al. 1998). According Saal et al. 

(2007), using output distance function to measure efficiency implies taking an output orientation where efficiency 

is improved by increasing output at a given exogenous level of inputs. On the other hand, input distance functions 

imply an input orientation where efficiency is improved by reducing input usage at a given exogenous level of 

outputs. An input orientation is suitable in modelling electricity distribution because distribution operators have 

more control over inputs than outputs. In practice, DSOs have limited influence over the, amount of energy they 

distribute, number of customers they serve, lengths of voltage line and the area operation they serve (in the short-

run), all of which constitute their outputs. However, they control their expenditures in terms of capital outlay 

(transformers, computers, substations, vehicles, etc.), operating expenses in terms of labour (managers, technicians, 

engineers, accountants, etc.) and other costs like repairs and maintenance. In fact the main objective of regulating 

DSOs is to influence their input-mix and expenditure decisions in order to reduce costs in a manner that does not 

compromise the quality of their service.  

3.1 Input Distance function 

Suppose
1( , . . . , )t t t k

Kx x x R  and
1( , . . . , )t t t m

My y y R   are input and output vectors respectively at time

t =1, 2, . . . , T . We define a multiple output production technology using a feasible input requirement set ( )t tL y  

which represents a set of input vectors, 
t kx R which can produce output vectors, 

t my R such that, 

( ) { ( , ) } , 1, . . . ,:t t t t t t tK
L y x y x where x can produce y at time t t TR 

       (3.1) 
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As discussed in Coelli et al. (2005), ( )
t t

L y  is assumed to satisfy strong disposability of inputs, is closed and convex 

for all outputs. However, the feasible technology defined in equation (3.1) is not known, it can be estimated from 

observed data points. Given data, we can measure the distance of each data point ( , )t tx y relative to the estimated 

frontier. Hence, we can define an input distance function that relates to the input output relation , y

t

tx



 
 
 

 for 1   

as; 

( , ) 1: ( )
t t t t

I

t
tMax x

D x y L y 


  
 
 
 

  (3.2)  

The input distance function  ,
I

t t t
D x y represents the maximum amount of a scalar  by which the input vector can 

radially be contracted to make the firm technically efficient without changing the output vectors.  As shown by Färe 

and Primont (1990),  ,
I

t t t
D x y is concave, homogeneous of degree one, and non-decreasing in inputs. Also 

 ,
I

t t t
D x y is quasi-concave and non-increasing with respect to outputs. Further,  , 1

I

tt t
D x y   for any feasible 

input-output mix or ( )
t t t

x L y and  , 1
I

tt t
D x y   when the input-output mix is infeasible or ( )

t t t
x L y . Hence, 

technical efficiency  t
TE is determined from input distance function as in equation (3.3). 

 I

t

t

t t
TE =

D

1

x , y
such that 

t
0 TE 1      (3.3) 

Because  ,I

t t t
D x y  is greater than or equal to a unit for any data point where the input vector lies within the feasible 

set, Equation (3.3) implies that  ,I

t t t
D x y  and t

TE are both equal to one when a firm produces at the frontier and

t
TE tends to zero as  ,I

t t t
D x y tends to infinity. 

3.2 Malmquist Productivity index and productivity growth.  

The paper is investigating the changes in efficiency and productivity growth over time given changes in the 

regulation governing electricity distribution. This is done by parametrically decomposing the Malmquist 

productivity growth index to obtain changes in technical efficiency, technical change and change in scale.  

Caves et al. (1982) shows that the Malmquist (1953) index can be used to measures  changes in productivity between 

two adjacent periods basing on a given reference technology. In practice, this reference technology is not known, it 

is represented by input distance function for a particular period or a combination of distance functions for both 
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periods derived from input-output data. Färe et al. (1992), defines the nonparametric Malmquist index with an input 

orientation  CCD

I
M as the geometric mean of corresponding Malmquist indices for adjacent periods t  and t +1  as 

shown in equation 3.4.   

     
1

1 1 1 1 1

CCD

I

0.5
1 1 1 1 1

0.5

1 1

( , ) ( , )

( , ) ( , )

M , , , , , ,, , ,

t t t t t t

I I

t t t t t t

I I

t t t t t t t t t t

I I

t t t t

D y x D y x

D y x D y x

M x y x y M x y x yx y x y



    

     
 

 

  

 
 
 

   (3.4) 

Where, corresponding to periods t and t +1,  ,
t t

x y and  1 1
,

t t
x y
 

are vectors of inputs and outputs for the 
thi

firm,  t

ID  and  1t

I
D



 are corresponding distance functions,  t

I
M  and  1t

I
M


 are the respective Malmquist 

indices.  

Further, Coelli et al. (2005) and Pantzios et al. (2011) show that a change in technical efficiency between two 

periods is computed from input distance function and related to the Malmquist index as,  

1

1 1 1 1

1 11 1

( , )
( , , , ) ( , , , )

( , )

t t t t

t t t t t t t tI i i i

i i i i i it t t t

I i i i

t

I

D y x TE
M x y x y TE x y x y

D y x TE



   

 
         (3.5) 

 Given  , 1I

tt t
D x y  for any feasible set of input-output mix,  CCD

I

1 1
M , , ,t t t tx y x y 

can be used to show 

whether productivity is declining, stagnant or improving when its calculated value is less than, equal to or greater 

than one, respectively. Studies have demonstrated that 
CCD

I
M

index can be decomposed using either nonparametric 

(Coelli et al. 2005, pp 61-83) or parametric (Rungsuriyawiboon & Coelli 2004; Saal et al. 2007) techniques to 

reflect the contribution of a change in technical efficiency and technical change to the overall productivity growth. 

A change in technical efficiency for a given period of time measures the firm’s movement towards the best practice 

frontier in the industry while technical change refers to the shift in the best practice frontier. Further decomposition 

of the index to reflect a change in productivity growth associated with scale effects is also possible using parametric 

(Balk 2001) or nonparametric methods (Färe et al. 1994). According to Färe et al. (1994), scale effects refer to 

changes in productivity resulting from a producer moving towards operating at a scale closer to the most productive 

scale size MPSS. As noted by Orea (2002), measuring productivity growth arising from scale effects using 
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parametric approaches is usually challenging because it requires computing scale efficiency which is problematic 

for globally increasing, decreasing and constant returns-to-scale production technologies.   

Therefore, to measure scale effects without scale efficiency, Orea (2002) re-defines the Malmquist parametric 

productivity index as the weighted index of output change less the weighted index of input change . Based on Saal 

et al. (2007), the weights are generated from estimates of the translog input distance function elasticities with respect 

to inputs and outputs as in equation (3.6). A negative sign is inserted before the output index to maintain it positive.  

       1 1 1 1

1 1

1 1
ln ln ln ln ln

2 2

M K
t t t t t t t t

I m m m m k k k k

m k

M y y x x      

 

             (3.6) 

Where, for periods t  and 1t  respectively, t

m

ln

ln

t

I

m

D

y






, 
1

t+1

m

ln

ln

t

I

m

D

y








 and, t

k

ln

ln

t

I

k

D

x






, 
1

t+1

k

ln

ln

t

I

k

D

x








 are 

distance elasticities of m  outputs and k inputs obtained from derivatives of the input distance function with respect 

to outputs and inputs evaluated with data points at time t and 1t  . Because the input distance function 

homogenous of degree one in inputs, the sum of input change weights or input elasticities is equal to a unit but the 

sum of output change weight does not which violates the proportionality property. The negative inverse sum of 

output weights -output elasticities- measures the scale elasticity 
tRTS  from the distance function for the technology 

in use (Atsbeha et al. 2012).  That is,  

M

t t

m

m = 1

RTS   = 1 
 
 
 

           (3.7) 

To recover the proportionality property stated by Orea (2002), equation(3.6) is transformed into a generalised form 

with both input and output weight equal to a unit. 

 

   

1 1 1

1 1 1

1 1

1

1
ln ln ln

2

1
ln ln

2

M M M
t t t t t t

I m m m m m m

m m m

K
t t t t

k k k k

k

G y y

x x

   

 

  

  

 



   

  

    
    
    

  



       (3.8)  
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Saal et al. (2007), defines 
M M

t t

m m

m = 1 m = 1

  = 1 1
t t

I
SFI RTS   

  
  
  
   as the input distance scale factor relative to constant 

scale elasticity at time t such that, 0
t

SFI   when  1
t

RTS  (constant RTS), 0
t

SFI  when 1
t

RTS  (decreasing 

RTS) and 0
t

SFI  when 1
t

RTS  (increasing RTS) and transforms the generalised productivity index into 3.9. 

     1 1 1

1

1
ln ln ln ln

2

M
t t t t t t

I I m i m i m m

m

G M SFI SFI y y   



        (3.9) 

To decompose the generalised productivity index into its components, Orea (2002) used the Diewert (1976)2 

quadratic lemma which states that; if 
nz R  is a vector of N arguments for quadratic function ( )F z evaluated at 

two points t and 1t  then, 
1 1 1

1

1
( ) ( ) ( ) ( )

2

R
t t t t t t

r

F z F z F z F z z z
  



          where 
F

F
z


 


. If ( , )t t t

ID x y

is quadratic with arguments 
t kx R ,

t my R and t , the difference of the input distance function estimates 

evaluated at data points t and 1t  is presented as,  

   

   

   

1 1 1

1

1 1

1

1

1
ln ln ln ln

2

1
ln ln

2

1
ln ln

2

M
t t t t t t

I I m m m m

m

K
t t t t

k k k k

k

t t

I I

D D y y

x x

D t D t

 

 

  



 





       

  

      
 




      (3.10) 

If we substitute for ln lnt t

ID TE  - the Farrell’s inverse technical efficiency (equation 3.3) into equation (3.10) 

and combine it with 3.9 and 3.6, we obtain the final decomposition of the generalised total factor productivity 

change (Saal et al. 2007) as,  

   

     

1

1

1 1 1

1

ln ln ln

1
ln ln

2

1
ln ln

2

t t

i i

t t

I I

M
t t t t t t

m i m i m m

m

IG TE TE

D t D t

SFI SFI y y 





  



 

     

  

  

  



      (3.11) 

                                                           
2 The quadratic identity lemma states that “the difference in quadratic function of N variables evaluated at two points is 

exactly equal to the sum of the arithmetic average of the first order partial derivatives of the function evaluated at the two 

points times the differences in the independent variables”(Diewert 2002). 
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Equation (3.11) represents firm level parametric decomposition of change in total factor productivity (TFPCt,t+1)3 

into change in technical efficiency (CTEt,t+1)4, technical change (TCt,t+1)5 and change in scale (SCt,t+1)6 respectively 

between period’s t and t+1 whose relationship is shown in equation (3.16)  

t,t+1 t,t+1 t,t+1 t,t+1
TFPC = CTE + TC + SC         (3.12) 

As Orea (2002) observes – the scale effect component in equation (3.11) can accurately account for the impact of 

change in scale on productivity growth without imposing constant returns to scale technology. Thus, estimates in 

3.11 are computed from stochastic frontier estimates for each firm i  at specific time t  evaluated with input-output 

data at adjacent periods. 

3.3 The Empirical model   

We have defined the t  period’s production for the thi firm which uses k inputs
t

ik
x , m outputs

t

imy  and faces technical 

change as an input distance function -   1 1
, [( ,..., , ,. , ])..,I

t t t t t t

i iK iK

t

i
x y F x x y yD t . As required by Färe and Primont 

(1990), we normalise with respect to the 
thr input t t

ir ik
x x to make the input distance function homogeneous of 

degree one in inputs.   

 1

1
,

1
, . , , . . ., 1 , . . . ,. . , ,

t t

t t i iK

i iMt t t

ir ir ir

I

tt t
t

x x
F y

x x x
y x yD

  
  

  
     (3.13) 

For empirical purpose, we impose a translog function form on ( )F  because it is, simple to derive its quadratic 

form in arguments (
t

ik
x ,

t

imy and t ), linear, flexible enough to impose homogeneity and test hypotheses on parameters 

(Christensen et al. 1973). Taking natural logarithms on both sides of model (3.13) and introduce the translog 

transformation for ( )F  , and ( )t

iqg Z -a linear function of observable exogenous variables, we obtain a translog input 

distance function with parameter vector as,  

                                                           
3 

1, 1
ln ln ln( )t t

i i

t t

I iG TFP TFPTFPC 
   

4 
1

, 1
ln ln

t t

i it t
CTE TE TE




   
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t t t
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The time-varying one sided error term itu captures firm-level inefficiencies that change over time. Introducing itv

the stochastic noise term, the translog input distance stochastic frontier is, 
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         (3.15) 

The regularity condition requires the input distance function to be homogeneous of degree 1 in input quantities 

and satisfy Young’s symmetry requirement for second order parameters, which imply imposing restrictions (3.16) 

and (3.17) respectively. 
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

        (3.16) 

, 1, 2, . . . ,
nm mn

m n M     and , 1, . . . ,
kj jk

k j K        (3.17) 

3.4 Econometric specification 

The distance functions (3.15) can be estimated by either nonparametric (e.g. data envelope analysis –DEA and 

nonlinear programming-NLP) or parametric methods like stochastic frontier analysis (SFA). Parametric methods 

are preferred because they, (1) allow for separation of statistical noise from inefficiency, (2) make treatment of 

measurement errors easy, (3) permit hypothesis testing on both parameters and functional form restrictions (Pantzios 

et al. 2011). In flexible functional form like translog, hypothesis testing is very important to specify parsimonious 

models and test whether; (a) significant technical change exists, (b) inefficiency is constant, (c) technology exhibits 

a particular form of returns-to-scale. The True Fixed Effects (TFE) panel estimator- by Green (2004, 2005a, b) is 

used because it, permits time varying inefficiency, controls for observed and unobserved heterogeneity, and 

separates inefficiency from unobserved heterogeneity. Exogenous environmental variables 
t

iqZ are included to 
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account for observable factors that contribute to inefficiency beyond managerial issues. The intercept coefficient 

i  is allowed to vary across DSOs to control for the unobserved heterogeneity. Unlike other panel frontier 

estimators, TFE is also preferred for its maximum likelihood dummy variable estimator (MLDV) which consistently 

estimates fixed effect models without dropping time-invariant variables –a common case with geographical 

variables. 

Given that we use three outputs, three inputs and four environmental variables, we maintain restrictions (3.16) 

and (3.17), and fix , 31, 2m  , 1, 2k  , and 1, 2,3,4q   to econometrically estimate model (3.15). We make 

additional assumptions 
it

u and
it

v  as per the following discussion.    

The overall error term is 
it it it

v u    where , . . .,1, 2 Ni   are DSO’s and 1, . . .,t T  are time periods. The random 

error term 2

it
v (0 , )

v
iid N  is assumed to be independent and identically distributed following a normal density 

with mean zero and variance 2

v
 . Also, 2

( , )
it it u

u N  


 is assumed to follow a strictly positive truncated normal 

distribution7 (Stevenson 1980) with mean 
it

  and variance 2

u . The mean inefficiency is estimated as 

'
it i

t

iqZ     where 
t

iqZ are observed exogenous factors whose parameters
q

 are estimated and 
i

 are firm 

specific fixed effects capturing unobserved heterogeneity. The overall estimated variance is
2 22 2

it
u v

     . Two 

additional parameters 2 2
/

u v
   and 2 2 2

/( )
u u v

      are estimated purposely to test hypothesis and compare the 

proportion of inefficiency to noise variations in the variance of the estimated model. As noted by Wang and Schmidt 

(2002) and Peter (2011), we do maximum likelihood estimation in one step for both technology and exogenous 

variables to avoid biases associated with the two-step approach. Estimate of technical efficiency are recovered via 

Battese and Coelli (1988) as, [exp( | )]
it it it it

TE E u v u   . 

 

                                                           
7 The SFPANEL module developed by Belotti et al. (2013a), implemented in STATA 13 restrict parametric SFA models with 

environmental variables only to be specified following a truncated normal distributions. 
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4.0 Data and variables 

This study uses a balanced panel dataset containing 118 Norwegian electricity distribution operators for a period of 

9 years 2004-20112. We use three outputs, three inputs and a number of environmental (nondiscretionary variables) 

in the input distance SFA model. Studies for efficiency analysis in utility distribution sectors require extra caution 

in the choice and measurement of inputs and output variables. Given that the major objectives of regulation is to 

enforce cost efficiency on DSO’s, knowledge of the sector’s key cost drivers is a prerequisite to choose what may 

constitute inputs, outputs and exogenous nondiscretionary environmental variables. Our choice of variables is 

guided by insights gained from previous studies carried out on the Nordic electricity distribution by Førsund and 

Kittelsen (1998); Edvardsen et al. (2006); Growitsch et al. (2010); and Growitsch et al. (2012). Further guidance is 

derived from various studies on efficiency in electricity distribution in European countries like, France by Coelli et 

al. (2013), United Kingdom by Jamasb and Pollitt (2000) and cross-country studies by Jamasb and Pollitt (2003) 

and Jamasb et al. (2012).  

4.1 Output Variables  

The three outputs adopted are number of customers served by a given electricity distribution utility, amount of units 

of energy delivered to customers in megawatt-hours (MWh) and the lengths of high voltage line in kilometres (KM) 

operated  by the DSO. As noted by Førsund and Kittelsen (1998), Jamasb and Pollitt (2000) and Robles et al. (2011), 

these output variables reflect the joint services which electricity distribution offers and the derived demand 

electricity enjoys (Neuberg 1977). As argued by Coelli et al. (2013), amount of energy delivered is the most 

important output because the main aim of any DSO is to deliver electricity to customers when they need it and in 

the right amount. Given that distribution network operator cannot decide the amount of energy to deliver, what 

DSOs can do is to ensure that the infrastructure they operate has the right load capacity to meet customer’s needs 

at all times. The amount of energy delivered can be viewed to reflect the load capacity of the network. Some studies 

have adopted to use gross energy delivered by including network losses. For this study we use the energy delivered 

through the network net of losses because we view energy losses as an input - a proxy for network voltage quality 

and reliability.  
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The number of customers is another important output variable that is inseparable from amount of energy 

distributed. Much as most of the activities a distribution operator does like customer metering, new connections, 

billing, emergence calling, are closely related to the number of customers, the operator has less control and 

discretion over their number. Ignoring to include the number of customers alongside the amount of energy delivered 

may cause a bias where those that sell to small scale consumers would seem inefficient despite serving many 

customers. 

The intensity of other activities such as vegetation clearing, routine line and substation maintenance, among 

others,  done by a distribution operator are directly related to the size of area served or the lengths of high voltage, 

medium or low voltage lines operated. In addition, customer density, a combination of length of voltage line and 

number of customers, is directly related to the costs and efficiency of the distribution company and hence influence 

its ability to deliver on security of supply. 

It is these three output variables in addition to number of transformers that NVE regulation uses in its DEA 

model for benchmarking electricity distribution utility companies (Nordic Energy Regulators 2011; Robles et al. 

2011).  

4.2 Input Variables 

The study uses three inputs -capital expenditures and total operating expenses are measured in monetary value while 

the amount of energy losses into the network is measured in physical MW/h. A number of inputs may form capital 

expenditures for example underground cables, overhead voltage lines, transformers substations, computers and 

machinery whose values may be provided in monetary value or not. The two sources of investment capital include; 

capital contributions from new customers and capital investment contributions made by the distribution operator. 

We include customer’s investment contributions because the output resulting from its investment will form part of 

the operator’s output (Edvardsen et al. 2006). For this study, we chose to aggregate these sources into total capital 

expenses based on book value as reported in the regulatory accounts for a given year. Following Coelli et al. (2013), 

we opt to ignore depreciation of total capital because using net capital would bias results. Using depreciated reflects 

DSO’s who have made a lot of recent investments as being more inefficient because their net capital is higher 

compare with those that made relatively equal investments earlier.  



14 
 

For the second monetary input, we consider non-capital expenses made by the DSO to meet its day-to-day 

activities. Included are expenditures on labour – managers, technicians, engineers, accountants, legal teams etc., 

operating costs – repairs, connection services, public relations costs, metering and billing costs, etc. We chose to 

aggregate these expenses with penalties arising from operator’s failure to supply electricity to willing customers 

(cost of energy not supplied -CENS) to form one monetary variable called total operating expenses (OPEX). 

Inclusion of CENS is to adjust OPEX for quality of supply and reflect it as a social-economic cost recoverable from 

society. For Norwegian DSO’s, CENS is computed as a product of the value of energy not supplied and the 

estimated customer’s willingness to pay for uninterrupted electricity supply- details are available in Ajodhia and 

Hakvoort (2005) and Langset et al. (2001). 

The third input is energy losses in MWhs. Based on the laws of physics, part of the energy transmitted through 

the network is lost as either heat or system leakages. Physical units of system losses –a bad input- acts as an 

imperfect substitute to the other two monetary inputs in the model. This is essential to accommodate the trade-off 

faced by distribution operators in making expenditure decisions (Coelli & Perelman 1999; Edvardsen et al. 2006).  

4.3 Environmental factors 

We have so far attempted to capture much of the observed heterogeneity between DSO’s using the three inputs and 

outputs. However, there are other factors –observable and unobservable– outside the operator’s control that may 

affect its efficiency. In a big country like Norway with a sparse population and diverse geography, environmental 

factors like location, forest cover, storms, climatic conditions and sea conditions are likely to cause significant 

variations in performance of DSO’s. The nondiscretionary variables assumed to be exogenous and used in this study 

are constructed as follows: 

Geography:- when benchmarking DSO’s, NVE-the regulator considers a number of factors including geography 

and weather variables to be nondiscretionary. Ignoring the effects these factors have on DSO’s performance would 

falsely imply they are affected equally despite the heterogeneous nature of Norway-DSO’s do not have any control 

over these factor yet they affect their efficiency. The two weighted composite variables used (Geo-1 and Geo-2) 

are computed using principal component analysis and factor analysis from factors such as; proportion of deciduous 
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or coniferous forests, small hydro generators, wind speed and number of coastal islands, snow cover, coastal climate 

and landscape8 (Growitsch et al. 2010; Nordic Energy Regulators 2011). 

Portion of underground cable: - the ratio of underground cable to the total length of voltage line operated by the 

DSO. Underground voltage lines are likely to significantly reduce the DSO’s OPEX (reduce maintenance costs), 

outages and system energy losses but require high capital investments to construct. Hence, this variable is a proxy 

to capture heterogeneity in network quality across DSO’s that may not be captured by inputs and outputs. 

Growth in the number of customers:- t 1

t

t

Cust
 Gcus  = 1

Cust

t
Cust




  is the annual growth in the number of customers 

served by a given DSO, relative to customer numbers in 2004 and hence equal to 1 in 2004.  

Time trend: - this is the time interval variable (1 2004)  which is included in the model in order to capture the 

effects of technical change.  

4.4 Descriptive summary of data  

Table 4.1 gives the summary statistics of the variables used in the model. Table 4.2 we observe that the annual 

average amount of energy delivered to the customer increases between 2004 and 2012.  

Table 4.1: Descriptive statistics 

Variables Units N Mean Std. Dev Minimum Maximum 

Output Variables       

Energy delivered (𝑦1) 𝑀𝑊ℎ   1062 587,198.80 1,616,877 17,825.00 16,800,000.00 

Number of customers (𝑦2) 𝑁 1062 22,222.86 57,911.40 947.00 562,501.00 

High Voltage line (𝑦3) 𝐾𝑀 1062 789.25 1,319.11 50.00 8,744.00 

Area served  𝐾𝑀2 1062 79,627.24 173,611.4 4,310.97 1,516,552.00 

Input Variables       

Capital  (𝑥1) (€′𝑠000) 1062 275,328.00 554,651.70 12,978.00 4,605,669.00 

Operational Expenditure (𝑥3) (€′𝑠000) 1062 47,001.49 95,528.41 3,358.00 955,845.00 

Grid Losses (𝑥2) 𝑀𝑊ℎ 1062 31,948.26 79,505.65 349.00 898,381.00 

Environmental variables       

Underground cable  𝑅𝑎𝑡𝑖𝑜 1062 0.31 0.18 0.03 0.86 

Customer's growth  𝑅𝑎𝑡𝑖𝑜 1062 1.01 0.02 0.83 1.24 

Trend 𝑡 (1 = 2004)   1062   1.00 9.00 

Geographical variable 1  1062  1.48 -2.06 4.86 

Geographical variable 2  1062  1.51 -0.63 11.83 

                                                           
8 The two variables Geo-1 and Geo-2 used are computed by NVE and used in this study as they are provided in NVE 2011 & 

2012 dataset. 
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A slight decline was recorded for 2006 and 2011; and the highest amount was distributed during the year 2010. 

Likewise, on average number of customers and the lengths voltage lines have been slowly increasing. This implies 

an increase customer density because the number of customers and the lengths high voltage line operated has been 

growing over a constant area of operation. On the other hand the observed higher increase in energy over a slowly 

growing voltage line signals an increase load density over time. This growth in customer density and load density 

reflects a growing need for services of distribution operators, and hence higher need for capital investments and 

operating expenses. 

Further, annual average level of capital expenditures has also continued to rise while expenses on operations of 

the distribution utilities are fluctuating. Our expectations were that higher capital expenses would match with grid 

expansion but we instead observe small growth in the voltage. The possible explanation for the steadily growing 

capital expenditure would be grid upgrades by installing modern expensive machinery and cables. The annual 

average level of grid losses is falling between 2004 and 2006 but increases thereafter with the highest recorded in 

2010. A puzzling scenario is why grid losses remain relatively high despite a steady increase in capital and operating 

expenses that would be meant to mitigate this problem. We would expect higher capital and operating expenditures 

to translate into higher investments in infrastructure like installing of transformers, laying more underground cables 

and maintenance of lines and poles which would lower energy losses. 

Table 4.2: Annual Averages 

Variable Units 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Energy Del GWH 530.84 553.59 542.89 558.23 566.71 578.94 618.12 569.65 596.56 

Voltage line KM 753.75 766.86 766.15 766.68 767.57 775.97 781.62 785.62 791.90 

Total capital  106 €′𝑠 234.18 237.21 243.56 249.81 260.00 272.11 284.35 298.21 314.25 

Grid Losses GWH 31.88 30.95 29.52 30.70 30.79 31.69 36.41 25.76 32.02 

Total OPEX 106 €′𝑠 54.26 52.41 54.13 55.35 61.16 60.99 63.80 68.96 57.945 

Customers N 20511 20993 21022 21318 21567 21742 21949 22204 22517 

5.0 Estimation and Results  

All variable are normalised by their arithmetic mean before they are converted into logarithms. The aim is to 

interpret the first order input distance function estimates as elasticities at sample average. Parameters in equation 

(3.17) are estimated using maximum likelihood dummy variable estimation programed in the SFPANEL module 

(Belotti et al. 2013a; Belotti et al. 2013b) implemented in STATA 13. We conducted restriction tests not only for 
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parsimony but also to reduce multicollinearity common in most flexible functional forms like translog. As shown 

in Table 5.1, at 1% critical level we reject the Cobb-Douglas technology, Hicks neutral technology, constant 

inefficiency and no unobserved heterogeneity restrictions while the restriction for no observed heterogeneity is 

rejected at 5% critical level. We decided to ignore the restriction for scale neutral output technology despite failure 

to reject it at 10% critical level. This is because of its conflict with the joint restriction of both inputs and outputs 

being Hicks neutral which is rejected at 5% critical level. Likewise we ignore imposing constant returns to scale 

despite failing to reject it. This is done to avoid biasing the estimates for scale efficiency9. The unrestricted translog 

input distance function estimated is non-decreasing (positive) in inputs and non-increasing in outputs (negative) 

thus satisfying the desired conditions to avoid biased scale effects estimates as noted by Orea (2002). 

Table 5.1: Properties of Norwegian electricity distribution technology 

Restriction                                      Hypothesis  Wald test Statistic  P-Value Decision  

Cobb-Douglas technology H0:All interaction terms are equal to zero 105.28 0.000 Reject 

Input Hicks neutral technology       H0: ψ1 = 𝜓2 = 0 9.45 0.009 Reject 

Output Hicks neutral technology    H0: η1 = 𝜂2 = 𝜂3 = 0 6.02 0.111 Accept  

Input and output Hicks neutral       H0: ψ1 = 𝜓2 = 𝜂1 = 𝜂2 = 𝜂3 = 0 11.93 0.036 Reject 

Constant Returns to Scale (RTS =1.109)  H0: 𝛼1 + 𝛼2 +  𝛼3 = −1 0.22 0.638 Accept  

No unobserved heterogeneity                    H0: 𝑉𝑎𝑟(𝑢𝑖𝑡) = 0 1717.60 0.000 Reject  

No observed heterogeneity            H0: 𝜉1 =  𝜉2 =  𝜉2 =  𝜉3 = 𝜉4 = 0 12.08 0.017 Reject 

Inefficiency is constant                 H0: eta = 0 977.24 0.000 Rejected 

 

Table 5.2 presents the estimated SFA input distance function. The scores of time varying technical efficiency are 

obtained from the conditional composite error term via the approach by Battese and Coelli (1988). The estimated 

parameters indicate the estimated portion of variance due to inefficiency –lambda ( 1.172)  – is greater than one 

and statistically significant. Gamma ( ) =0.540 implies that the error is mainly associated with inefficiency than 

statistical noise. 

All parameters 
q  for the four environmental variables in the model are statistically significant with the expected 

signs. Note that, a negative coefficient for a z-variable indicates an increase (decrease) in technical efficiency 

(inefficiency) respectively and the reverse is true. The coefficient for the proportion of underground cable to the 

                                                           
9 Curvature and monotonicity conditions for input distance functions require unrestricted first order input and output 

parameters to be positive and negative respectively. 
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entire voltage line 1 is negative and statistically significant indicating a positive effect on technical efficiency. This 

result is very reasonable given the fact that underground cables are less prone not only to energy losses but also 

disturbances due to bad weather, vegetation cover, snow cover, etc. and require less effort and costs to maintenance. 

The parameters 2 and 3 for composite geographical variables10 are statistically significant and positive reflecting 

variations in inefficiency resulting from diversity in forest cover, coastal climate, storms etc. This result emphasizes 

the importance of considering location differences while implementing regulatory policies. Likewise, the coefficient 

for annual growth in the number of customers 4 is also statistically significant thereby underscoring the negative 

effect of the size customer base on the efficiency level of the distribution utility. Most of the activities included in 

the day-to-day operations of a distribution utility (metering, repairs, call service, etc.) are linked to the number of 

customers. Hence a higher growth in the number of customers is more likely to attract higher share of operating 

expenses in input requirement lest the company becomes inefficient. 

Recall that data for inputs and outputs was normalised around their mean values using computed sample 

averages. The aim is to interpret the respective estimated first order parameters m and 
k for inputs and outputs as 

input elasticities and output elasticities for a hypothetical distribution utility operating at sample average (all 

variables are transformed into logarithms except trend and Z-variables).  

Likewise the trend variable was normalised by taking a deviation from its mean value. Therefore, we interpret 

the trend parameter 1 as the rate of technical change the average distribution utility achieves by the mid-year of 

the sample (2008). The second order trend parameter 2 measure the annual rate of technical change experienced 

by the hypothesised DSO operating at sample average. Our model includes interactions of trend variables with 

inputs and outputs, hence parameters k and 
m capture the annual rate of change in input and output elasticities 

for the sample average DSO. 

                                                           
10 Composite geographical variables are derived from weather and geographical factors using factor analysis and principal 

component analysis. 



19 
 

Table 5.2: Parameter Estimates of the input distance function 2004-2012 (N = 1062, 118 Groups) 

Variable  Parameter Coefficient T-Stat Variable  Parameter Coefficient T-Stat 

Amount of energy delivered (𝑙𝑛𝑦1) 𝛼1 -0.286***  -3.00 (𝑙𝑛𝑦3)(𝑙𝑛𝑥2)  ℶ32 0.107**   2.26 

  (0.095)    (0.047)  

Number of customers (𝑙𝑛𝑦2) 𝛼2 -0.138 -0.66 (𝑙𝑛𝑥1)(𝑙𝑛𝑥2) ℶ22 -0.069* -1.60 

  (0.209)    (0.043)  

Lengths of voltage line (𝑙𝑛𝑦3) 𝛼3 -0.477** * -2.92 𝑡  𝛾1 -0.022*** -6.64 

  (0.163)    (0.003)  

Capital expenditure  (𝑙𝑛𝑥1) 𝛽1 0.707*** 29.05 𝑡2 𝛾2 -0.002**   -2.36 

  (0.024)    (0.001)  

System energy losses (𝑙𝑛𝑥2) 𝛽2 0.160*** 8.13 𝑡(𝑙𝑛𝑦1) 𝜂1 -0.013**   2.17 

  (0.020)    (0.006)  

Total operating expenses (−𝒍𝒏𝒙𝟑) 𝐷𝑒𝑝_𝑣𝑎𝑟 0.133  𝑡(𝑙𝑛𝑦2) 𝜂2 0.018**   2.43 

(𝑙𝑛𝑦1)2 𝛼11 0.854*** 9.93   (0.007)  

  (0.086)  𝑡(𝑙𝑛𝑦3) 𝜂3 -0.004 -0.89 

(𝑙𝑛𝑦2)2 𝛼22 1.053*** 3.44   (0.005)  

  (0.306)  𝑡(𝑙𝑛𝑥1) 𝜓1 -0.017***  -2.96 

(𝑙𝑛𝑦3)2 𝛼33 0.123 0.69   (0.006)  

  (0.177)  𝑡(𝑙𝑛𝑥2) 𝜓2 0.012* 1.83 

(𝑙𝑛𝑥1)2 𝛽11 0.136* 1.63   (0.006)  

  (0.083)  Environmental variables    

(𝑙𝑛𝑥2)2 𝛽22 0.193***  3.22 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜉0 -0.035 -0.17 

  (0.060)    (0.205)  

(𝑙𝑛𝑦1)(𝑙𝑛𝑦2) ∅12 -0.891*** -5.27 % 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟 𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑎𝑏𝑙𝑒 𝜉1 -0.457**   -2.57 

  (0.169)    (0.178)  

(𝑙𝑛𝑦1)(𝑙𝑛𝑦3) ∅13 0.008 0.05 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1 𝜉2 0.109**   2.25 

  (0.157)    (0.049)  

(𝑙𝑛𝑦1)(𝑙𝑛𝑥1) ℶ11 0.258***  3.22 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2 𝜉3 0.054***  3.17 

  (0.080)    (0.017)  

(𝑙𝑛𝑦1)(𝑙𝑛𝑥2) ℶ12 -0.185*** -3.86 𝐺𝑟𝑜𝑤𝑡ℎ 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑠 𝜉4 0.342* 1.87 

  (0.048)    (0.184)  

(𝑙𝑛𝑦2)(𝑙𝑛𝑦3) ∅23 -0.140 -0.74 𝑆𝑖𝑔𝑚𝑎(𝑢):    𝜕𝑢
2  0.056*** 5.91 

  (0.188)    (0.009)  

(𝑙𝑛𝑦2)(𝑙𝑛𝑥1) ℶ21 -0.108 -1.15  𝑆𝑖𝑔𝑚𝑎(𝑣):     𝜕𝑣
2  0.048*** 15.43 

  (0.094)    (0.003)  

(𝑙𝑛𝑦2)(𝑙𝑛𝑥2) ℶ22 0.109**   2.19 𝐿𝑎𝑚𝑏𝑑𝑎:    𝜆 =  𝜕𝑢
2/𝜕𝑣

2  1.172*** 106.46 

  (0.050)    (0.011)  

(𝑙𝑛𝑦3)(𝑙𝑛𝑥1) ℶ31 -0.156***   -3.11 𝐺𝑎𝑚𝑚𝑎: 𝛾 = 𝜕𝑢
2/(𝜕𝑢

2 + 𝜕𝑣
2)  0.540  

  (0.050)  𝐿𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛    1567.15 

***, ** and * indicate significant at 1%, 5% and 10% critical levels respectively Reported in parentheses are standard errors.



20 
 

Focusing on output elasticities, all parameter estimates m are negative as required,
1 0.286   and 

3 0.477    the output elasticities for energy delivered and lengths of voltage line a DSO operates are 

statistically different from zero but 
2 0.138    the elasticity of number of customers11 is not significant. 

The estimates reveal the returns to scale for a distribution utility operating at sample average to be 1.109. 

As explained before, we are not able to reject the hypothesis that the estimated technology faces constant 

returns to scale despite the returns to scale being greater than one. The magnitude of 1  and 3 reveal 

physical energy delivered and the grid infrastructure respectively to be the major cost drivers for DSOs. 

The technical change parameters 1 and 2  are significantly different from zero and negative. This 

indicates that a DSO assumed to be operating at sample average will achieve positive annual rate of 

technical change of 2.2 percent by the 2008-the middle year of the sample. Likewise, 2 estimates technical 

change to be increasing at a rate 0.2 percent per annum. A joint test on 
m concluded that technical change 

has not had significant scale effects. Jointly, 
1 2 3

0.009     showing that due to technical change the 

elasticity of these outputs with respect to overall output activities of electricity distribution decrease at an 

annual rate of 0.9 percent. Parameters 1 and 3 are negative while 2 is positive, 3 -the annual rate of 

change of elasticity length of the voltage line is not significant. For a sample average DSO, the elasticity 

energy distributed increases at an annual rate of 1.3 percent 
1

( 0.013)   while the elasticity of customers 

decreases at a rate of 1.8 percent
2

( 0.018)  per annum.  Results also reveal technical change to be input 

augmenting –the hypothesis of technology being hicks neutral is rejected. Estimates of k reveal that 

technical change significantly increases the elasticity share of capital and significant decreases in the 

elasticity share of energy losses. 
1 0.017   shows that technical change has been enhancing the 

productivity of capital at a rates of 1.7 percent per year and reducing the elasticity share of system losses at 

                                                           
11 Estimates of the same model using Battese and Coelli (1995) gives statistically significant estimates for all outputs 

including number of customers.  
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an annual rate of 1.2 percent. Combining both input elasticity shares as 
3 1 2( ) 0.005       reveals 

an increase in the elasticity share of expenditures on operations by 0.5 percent per annum. 

From Table 5.2, all first order input distance function parameters for inputs
k estimated at sample 

average are positive and statistically significant. This is consistent with theory which requires input distance 

functions to be non-decreasing in inputs. The estimated input elasticities are 0.707, 0.160 and 0.13312 for 

capital, system energy losses and operating expenses respectively. These input elasticities indicate capital 

as having a higher input share (70%) which clearly reflects electricity distribution as a capital intensive 

industry. We also observe that an estimate of 16% of the input requirement goes into system losses as either 

mitigation expenses or direct losses.  

5.1 Technical efficiency and incentive regulation  

We seek to find empirical evidence in support of the claim that DSO’s are performing better under incentive 

regulation (2007-2012) compared to the previous regime of regulation (2001-2006). Two potential gains 

have been investigated; efficiency gains and gains in productivity.  

Table 5.3: Estimated Technical Efficiency Scores by year 2004 - 2012  

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Minimum  0.639 0.653 0.629 0.630 0.657 0.681 0.677 0.677 0.685 

Lower Quater 0.929 0.910 0.931 0.931 0.946 0.956 0.959 0.949 0.957 

Median 0.975 0.969 0.973 0.975 0.983 0.984 0.984 0.983 0.983 

Average 0.934 0.930 0.932 0.936 0.943 0.947 0.948 0.951 0.950 

Maximum 0.998 0.997 0.997 0.997 0.997 0.997 0.998 0.997 0.997 

 

Focusing on technical efficiency, results indicate an increase in efficiency scores after a change to the in 

regulatory regime. As illustrated in Fig 5.1 and Table 5.3 the minimum, first quartile, mean and median all 

improve from lower to higher efficiency score levels after 2007. Observing these scores into two period 

categories 2004-2006 and 2008-2012, considering 2007 as a transition period to a new regulation. Results 

indicate higher efficiency improvements for lower performing distribution utilities. The minimum 

efficiency level in the entire industry increases from an average of 0.641 to 0.675 and the first quartile 

                                                           
12 Input distance functions is estimated under homogeneous of degree one. Hence, the elasticity share of operating 

expenses is recovered from
3 1 21     .  
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increases from 0.923 to 0.953, an increase of 3.5 percent and 3.0 percent respectively. The median 

efficiency score remains above the mean efficiency score and improves by 1.1 percent (0.973 to 0.983) 

while mean efficiency score increases by 1.6 percent (0.932 to 0.948). 

 
Fig 5.1: Technical efficiency scores over the period 2004 – 2012. 

 

An interesting result is the increased negative skewness (-1.758 to -2.057) in efficiency scores -the first 

lower performing quarter (25%) improves from below average to above average (despite an increase in the 

mean) after the introduction of incentive regulation. This implies that more than 75 percent of DSO’s 

currently perform above average from 2008-2011. The upward shift of efficiency levels including the 

minimum could imply that revenue caps have had an effect on relatively inefficient DSO’s. An upward 

shift in efficiency is a sign that firms adjust their cost efficiency to cope with the new regulation that hinges 

more of their profitability on their efficiency. However, towards the end of the regulatory period we 

observed a slight drop in efficiency levels. This is typical of the ratchet effect because the new regulation 

commonly uses the costs incurred in the final year as a basis for the revenue cap of first year in the new 

regulatory regime which gives DSO’s incentive to over spend.  

We test a number of hypotheses regarding the degree to which incentive regulation has improved efficiency 

and productivity across these periods.  
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Hypothesis 1:  

The first hypothesis we consider is whether there are significant differences in average efficiency scores 

when DSO’s were under a new regime of incentive regulation. The null hypothesis is means of TE are equal 

across the two periods. Results in Table 5.5 (appendix) indicate that at 1%level of significance (p=0.006) 

we reject the null hypothesis in favour of the alternative that the mean TE is greater in the second period. 

5.2 Productivity growth and incentive regulation 

Based on the estimated input distance function, we computed annual parametric productivity change indices 

as described in equations (3.15) and (3.16). We decomposed total factor productivity change (TFPC) into 

change in technical efficiency (CTE), change in technical change (CTC) and scale efficiency change (SEC). 

In Figure 5.2, we observe that CTE is largely positive throughout the period of the new regulation showing 

that efficiency improvements are sustained by majority of DSO’s. The highest average efficiency 

improvement is observed immediately after the change –a CTE of 0.754 and 0.494 percent between 2007/8 

and 2008/9 respectively., in the last period 2011/12 CTE is negative. The cumulative average CTE in only 

three years immediately after the change in regulation is 1.306 percent compare to 0.259 percent in the 

years before. Borrowing and idea from environmental regulation, this type of behaviour is consistent with 

our expectations that DSO’s are likely to reorganise to gain competitiveness in order to cope with a new 

relative tighter regulation and hence perform better (Porter 1991).  

Changes in TFP resulting from SEC are positive for the entire sample period except for 2010/2011 

when SEC is negative 0.21percent .The estimated returns to scale is 1.109 and we could not reject the null 

of constant return to scale technology for a hypothetical DSO operating at sample average. This justifies 

the observed small values for scale efficiency change. The change seems to have little effect on scale 

adjustments –the average SEC is 0.141 with a cumulative of 0.687 percent in the first three years of IR 

while on average SEC is 0.141 with a cumulative of 0.424 for the prior period.  

As discussed before, a hypothetical DSO operating at sample average is faced with a statistically significant 

rate of technical change 1  of 2.2 percent by the middle year of the sample and it is increasing at a 

significant rate 2  of 0.2 percent per year. Extending this estimate across time for all DSO’s in the industry 
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which gives an increasing trend representing time specific -pure technical change (PCTC)13. Test on 

whether technology is input and output augmenting are able to reject the null hypotheses of technology 

being, Hicks neutral and combined Hicks & Scale neutral. As discussed parameters 
m and k are 

statistically significant indicating that technical change has a significant firm-specific effects on the 

productivity of DSO’s. Deducing from equation (3.15) we compute firm-level specific technical change 

(CTC)14.  As seen in Fig 5.2, the computed annual average percentages of CTC and PCTC are both 

increasing and different which confirms the embodied nature of technical change. 

To find out whether this embodied technical change is significant and differs across with change to the new 

incentive regulation, we test two hypotheses 2 and 3 respectively.  

Hypothesis 2: 

We test whether technical change gives substantial evidence of embodied technology. At 1% critical level, 

we reject the null hypothesis that the different between means of CTC and PCTC is equal to zero in favour 

of the alternative that difference in means is greater than zero. This confirms a significant embodied 

component of technical change which is line with the finding of technical change being input and output 

augmenting. 

The level of embodied technical change is positive throughout but higher after introducing the new 

regulation in 2007. The difference increases from an annual average of 0.113 percent during 2004-2007 to 

0.189 percent after 2007. To investigate whether this observable difference is statistically significant, we 

test hypothesis 3.  

                                                           
13 Time specific technical change across the industry is calculated by  , 1 1 2 ( 0.5)t tCPTC t       hence 

 , 1 1 2exp ( 0.5)t tTC t         

14 Technical change experienced by each specific DSO is calculated (Saal et al. 2007)

   
2 3

1 1

, 1 , 1 , ,

1 1

0.5 ln ln ln ln
m m

t t t t

t t t t k k i ki m m i mi

k m

CTC PCTC x x y y 
 

 

 

 

    
         

    
   
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Fig 5.2: Average annual percentage change in technical change (CTC & PCTC) 

Hypothesis 3. 

We test whether embodied technical change increases after the introduction of IR. At 1% critical level, we 

reject the null hypothesis that the mean of embodied technical change after 2007 is equal to the mean before 

in favour of the alternative that the mean of embodied technical change is higher during 2008-2011  

Table 5.4: Average total factor productivity 2004-2012 

Year 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 

Efficiency change  -0.489 0.184 0.564 0.754 0.494 0.058 0.411 -0.126 

Technical change  1.636 1.826 2.059 2.206 2.403 2.634 2.754 3.131 

Scale efficiency  0.192 0.026 0.206 0.174 0.145 0.368 -0.210 0.250 

Productivity growth 1.339 2.035 2.829 3.134 3.042 3.060 2.955 3.256 

Share decomposition of average productivity rate 

Efficiency change  -0.365 0.090 0.199 0.241 0.162 0.019 0.139 -0.039 

Technical change  1.222 0.897 0.728 0.704 0.790 0.861 0.932 0.962 

Scale efficiency  0.143 0.013 0.073 0.056 0.048 0.120 -0.071 0.077 

Productivity growth 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

From Figure 5.3 and Table 5.4, we observe maximum annual average productivity growth in industry is 

registered during the 2007/8 and 2011/12. We note that total factor growth rates in the industry are largely 

driven by technical change. Table 5.4 shows the distribution of percentage factor shares as 86.2, 8.5 and 

5.3 for technical change, efficiency change and scale efficiency change respectively. Figure 5.3 and 5.4 

2004-
2005

2005-
2006

2006-
2007

2007-
2008

2008-
2009

2009-
2010

2010-
2011

2011-
2012

CTC 1,636 1,826 2,059 2,206 2,403 2,634 2,754 3,131

CPTC 1,55 1,727 1,904 2,082 2,259 2,436 2,613 2,791

Embodied TC 0,086 0,099 0,154 0,124 0,144 0,198 0,14 0,34

0

0,1

0,2

0,3

0,4

0,5

0,6

0,9

1,4

1,9

2,4

2,9

Em
b

o
d

ie
d

 t
ec

h
n

ic
al

 c
h

an
ge

 

G
ro

w
th

 r
at

e 
o

f 
te

ch
n

ic
al

 c
h

an
ge

CTC CPTC Embodied TC



26 
 

shows during incentive regulation a significant sustained improvement in productivity growth in the 

industry is registered. Average annual factor productivity growth rate increases from 2.068 to 3.078 percent 

after 2007 - a significant difference at 1% critical level as shown hypothesis 4 in Table 5.4 (the null 

hypothesis is: difference in mean annual TFPC before and after 2007 is zero versus the alternative that 

mean TFPC is greater after 2007).  

 

 Figure 5.3: Productivity growth indices 2004/05 to 2011/12 

Are these changes in efficiency and productivity a results of change in regulation?  

It may require analysis outside the scope of this paper to completely disentangle the effect of policy change 

to incentive regulation on the performance of DSO’s. However, possibly argue that changes coincide with 

the timing of a change in regulation. Porter (1991,996) argues that firms perform better when they are 

subjected to stringent environmental regulation because it stimulates innovation of technological change 

and improved firm competiveness.  As to whether the new incentive regulation is tighter than the previous 

regulation may be debatable. But the new regulation is inclined towards yardstick completion than to rate-

of-return regulation (Shleifer 1985) that would guarantee the survival of inefficient firm. We see that the 

industry experiences relatively higher annual average levels of technical change. In hypotheses 2 and 3 we 

confirm that the industry faces relatively higher levels of embodied technical change that is both input and 

output augmented which is synonymous to increased level of innovation On the other hand, results indicate 
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significant efficiency improvements in the industry. In the first hypothesis we concluded that DSO’s 

increase their efficiency levels after the change in regulation most especially lower performing DSOs. Saal 

et al. (2007) and Rungsuriyawiboon and Coelli (2004) indicate this to the behaviour of firms subjected to 

revenue and price caps. We note that improvements in cost efficiency is necessary for a firm to remain 

competitive (earn profits) and survive under yardstick completion. Therefore, there seems to be link 

between change to incentive regulation and the observed trend in efficiency and productivity improvements.  

6.0 Conclusion  

This paper has analysed the impact of incentive regulation on efficiency and productivity of companies 

engaged in distribution of electricity in Norway. A sample of 118 DSOs observed for a period of 9-years 

2004-2012 was used to estimate an input distance function stochastic frontier. True fixed effects model is 

estimated with three inputs, three outputs, environmental variables and unobserved heterogeneity. We 

estimated technology parameters, technical efficiency scores and parametrically decomposed total factor 

productivity into efficiency change, technical change and scale efficiency change. Hence, the paper updates 

the literature on productivity growth in Norwegian electricity distribution sector and demonstrates the 

applicability of parametric approaches to decomposing total factor productivity.  

From efficiency scores calculated, we found that the industry experiences significant improvements in 

technical efficiency after the introduction of IR. Interestingly, the new regulation is found to have more 

pronounced efficiency effects in relatively more inefficient DSO’s;after the introduction of IR, over 75% 

of DSO’s perform above a higher average efficiency score. Likewise, we found that the industry 

experiences sustained productivity growth mainly driven by embodied technical change. Productivity 

growth increases by an annual average of 3.089 percent after the introduction of IR compared to a rate of 

2.068 percent before.  

Using empirical results, we tested four hypotheses regarding the impact of change in regulatory policy 

on efficiency, technical change and productivity. Conclusions from hypothesis testing indicated that during 

incentive regulation the industry had significant improvements in technical efficiency, technical change and 

productivity growth. Consistent with Porter’s hypothesis, we find that during incentive regulation the 
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industry experiences significant improvement in embodied technology and overall factor productivity 

growth. Hence, the policy seems to achieve its intended economic objective but a sign that a review is 

needed is seen –a negative growth in technical efficiency is observed for the period 2011-2012.  
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7.0 Appendices  

Table 5.5: Hypotheses tested regarding the effect of IR  

Hypothesis Mean T-value P-value Decision 

 2004-2006 2008-2012    

Hypothesis (1) H0: means of technical efficiency before and after 2007 are equal 

0.9318 0.9478 2.756*** 0.006 Reject  

Hypothesis (3) H0: means of embodied technical change before and after 2007 are equal 

0.1130 0.1895 2.800*** 0.005 Reject 

Hypothesis (4) H0: means of productivity growth before and after 2007 are equal 

2.0680 3.0893 6.801*** 0.000 Reject 

Hypothesis (2) H0: difference in between CTC and PCTC is equal to zero 

CTC =2.170 PCTC =2.331 6.692*** 0.000 Reject 
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