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To present an empirical test of the effectiveness of electricity restructuring in 
improving the electricity generation efficiency, I analyze the variation in productivity of 
73 investor-owned nuclear power plants in the United States from 1992-1998. I find 
consistent evidence that high-cost plants are more likely to be restructured. Accounting 
for this policy endogeneity, survival analysis and two-stage least squares are used to 
implement a “pseudo” randomization process to create exogenous variation in regulatory 
status. Overall, I find striking relationship exists between restructuring and the efficiency 
improvements, and that some efficiency gains have come about from the adoption in 
advanced technology.  

 

I. Introduction 

For just over a decade, the U.S. electricity industry has been undergoing drastic 
reform in the way it prices and delivers electricity to millions of households and 
businesses. After a century of government-sanctioned monopoly in the form of closely 
regulated utilities, this $220 billion industry is being restructured and opened to 
competition. At the federal level, the 1992 Energy Policy Act, followed by Order 888 and 
Order 889 from the Federal Energy Regulatory Commission (FERC) in 1996, opened 
access to the transmission grid for nonutility generators and initiated the restructuring of 
interstate wholesale markets. At the state level, as of July 1, 2004, 24 states and the 
District of Columbia had enacted legislation and/or passed regulatory orders that will 
allow consumers to choose their electricity providers (U.S. Energy Information Agency 
(EIA), 2003).  
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Economic theory predicts that an important merit of market restructuring is to 
increase industry efficiency by creating incentives for cost savings and the adoption of 
new technologies (Laffont and Tirole, 1993).  This prediction has been realized in the 
restructuring of a host of other industries—airline, banking, trucking and 
telecommunications (Baltagi, Griffin, and Rich, 1995; Avkiran, 2000; Rose, 1987; Olley 
and Pakes, 1996). As for electricity, inefficiencies that could be corrected by introducing 
competition were observed under traditional regulation (Pescatrice and Trapani, 1980; 
Hayashi et al., 1997; Koh et al., 1996). However, empirical studies of ex post efficiency 
gains from restructuring are sparse. To date, most of the academic literature regarding 
restructured electricity markets has assessed the exercise of market power in regional 
submarkets. Markiewicz, Rose, and Wolfram (2004) (Hereafter, MRW) Knittel (2002), 
Hiebert (2002), and Kleit and Terrell (2001) are the few papers that rigorously examine 
the impact of market restructuring on productivity in the context of the U.S. electricity 
industry. However, the study samples in these papers have only included fossil fuel-fired 
generating units.   

 
The objective of this paper is to measure whether state-level restructuring improved 

the operating efficiency of nuclear power plants during the transition phase of regulatory 
change. The question is important because much of the motivation behind the 
restructuring efforts is to drive down costs and prices by eliminating inefficiencies. 
However, this rational does not get much attention in public discussions because these 
effects remain, for the most part, unquantified. As it is argued that restructuring 
contributed to the severity of the 2000–2001 California electricity crisis and the August 
2003 blackout in the Northeast (Van Doren and Taylor, 2004), restructuring has been the 
focus of heated debate around the country. It is, therefore, important to identify and 
measure the size of the benefits from restructuring to respond to policy proposals that 
may emerge from these debates. 

 
My particular interest in investigating the nuclear energy industry arises not only 

because it is an important component of the U.S. electricity supply – it is the second 
largest source, producing over one-fifth of the country’s electricity—but also because it is 
an industry that has experienced substantial efficiency improvements since 1990s, the 
same time when restructuring got underway 3 .Ultimately, to what extent these 
improvements were induced by market restructuring remains an empirical question. In 
addition, the stable structure of the nuclear power industry—due to its huge entry and exit 
costs—offers a unique opportunity to test directly the relationship between competition 
and efficiency.  Previous literature suggests that competition usually involves significant 
entry and exit. Therefore, it is difficult to examine whether increased competition forces 
efficiency improvements in incumbent plants because inefficient plants are often driven 
out of business, leading to a sample selection issue (Olley and Pakes, 1996; MRW, 2004). 

                                                 
3During the 1970s and 1980s, the operating and maintenance costs of nuclear power plants rose at an 
annual rate of 12% (EIA, 1988) and the commercial nuclear energy was written off as uneconomic and 
financially risky. This perspective changed over the past decade when the median industry capacity factor 
of nuclear power plants increased from 70.2% in 1990 to 90.5% in 2004; Annual electricity generation from 
the nuclear sector increased from 612.6 billion kilowatt hours in 1991 to 788.5 billion kilowatt hours in 
2002.  (EIA  http://www.eia.doe.gov/cneaf/nuclear/page/nuc_generation/nugen_data.xls) 
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However, this type of selection is avoided in the situation studied in this paper. The 
nuclear power industry remains fairly stable even in a competitive environment. With the 
significant costs and barriers to the siting and permitting of new units, or the 
decommissioning of old ones, no applications for new nuclear plants were filed in the 
United States in the last 25 years, and only 5 out of 73 plants were retired after 1992.4  

 
To measure the effects of restructuring on productivity, a counterfactual analysis is 

required to estimate the productivity changes solely attributable to restructuring that 
would not have occurred otherwise. Because restructuring at the retail level has been 
quite uneven across the states, the time series and geographical variation in regulatory 
status ostensibly provide an opportunity to construct a counterfactual to disentangle 
restructuring efficiency gains from those due to factors exogenous to restructuring, such 
as the increased power demand and plants’ learning effects, etc. However, it is often hard 
to argue that restructuring process is a natural experiment (or random treatment). States 
that were expected to gain the most from restructuring are perhaps the ones that 
eventually adopted the policy. In that case, plants that were restructured differ from the 
counterfactual on the basis of productivity and a direct comparison would distort the 
estimation. This paper pays particular attention to this econometric identification problem 
and demonstrates how to provide a “pseudo” randomization device for the analysis of the 
influence of restructuring on productivity. 

 
The study is based on plant-level panel data of power generation and costs from 1992 

to 1998 for all 73 investor-owned nuclear power plants in the United States that were 
operational in 1992. The analysis takes advantage of the most detailed and 
comprehensive data on the restructuring process across the country, including the date of 
each landmark event toward restructuring at the state level. Using capacity factor and unit 
production cost as proxies of productivity, I find positive association between the 
multiple steps of restructuring and plant operating efficiency. Issuing a restructuring plan 
brings an average 9.1 percentage points increase in capacity factor; the regulatory 
approval of market restructuring yields an average 5.7 percentage points increase in 
capacity factor; when the probability of moving toward restructuring increases by 10%, 
plant unit production cost decreases an average 9.8%, ceteris paribus. In addition, states 
that have considered or implemented restructuring are more likely to see an investment in 
the adoption of new technology (“power uprates”) and in a greater magnitude.  

 
 The remainder of the paper is organized as follows: Section II provides a brief 

background of electricity restructuring and its potential effects on the nuclear industry, 
Section III develops the empirical models, Section IV presents the data, while Section V 
discusses the estimation results, and Section VI concludes the paper. 

II. Electricity Restructuring and Its Impact on Nuclear Industry  

Historically in the United States, the three parts of the electricity supply—generation, 
transmission, and distribution—were assumed to be a natural monopoly and were 

                                                 
4 The retired capacity represents only 4.6% of the total nuclear generation capacity. 
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operated by a single utility to exploit the economy of scale. Within a defined 
geographical area, one or a small number of firms have exclusive rights to serve retail 
customers. As these firms are partially exempt from competitive pressures, they are 
subject to rate-of-return regulation under the basic principle that electricity prices should 
be set equal to utilities’ average production cost.  

 

Under the traditional rate regulation, a firm receives a profit as a function of its 
capital expenditure. Beginning with Averch and Johnson (1962), a number of authors 
have proved theoretically and empirically that private, regulated monopolies tend to 
apply capital-intensive generation relative to the optimum (Atkinson and Halvorson, 1980; 
Granderson and Linvill, 2002; Rungsuriyawiboon and Stefanou, 2003). In addition, since 
the firm does not get to retain any benefits of cost reduction, its profits being limited to a 
“reasonable return,” firms are less motivated for technology efficiency as well.5 

 

With growing public pressure for correcting the economic inefficiency of the old 
regulatory system, electric restructuring proceeded at an ever-accelerating pace at both 
the federal and state levels in the 1990s. The Energy Policy Act of 1992 and Federal 
Energy Regulatory Commission Order (FERC) 888 opened transmission access to 
nonutilities, thereby establishing interstate wholesale competition. Many states also have 
encouraged nonutilities’ entry into the electricity market and have adopted retail 
competition as the primary pricing mechanism for electricity generation.6 

 

Competitive pricing provides firms with a powerful incentive to reduce costs. This is 
because restructured markets made firms residual claimants on all cost increases or 
decreases over time. Particularly in many restructured states, nuclear plants lost the 
ability to pass through the costs of repairs and replacement power to cover commitments 
during outrages.7 This means that any extended downtime could lead to a large loss of 
revenue. 8  Secondly, the potential entry of low-cost generators increased competitive 
pressure. For nuclear power, the key challenge is to be directly competitive with other 
types of fuel generation on the marginal cost of operation (i.e., operating and 
maintenance [O&M] costs), including repair and refurbishment expenses, and fuel costs. 

Although the average O&M costs for nuclear are low compared to other energy sources, 
the cost is not low for all plants.9 In fact, the plants in the high-cost quartile spend twice 
as much on O&M as the plants in the low-cost quartile and as large, coal-fired power 
plants. Rothwell (1998) estimates that 6.3% to 17.5% of current nuclear capacity is not 

                                                 
5 Joskow (1974) points out that because regulators might not be active enough in the oversight of the firm, 
there is a “regulatory lag;” that is, the actual rates of return earned by electric utilities may be above or 
below the commission-determined fair rate of return at any instant. When prices are fixed, utilities can 
increase profits by cutting costs. But Joskow also admits that regulatory lag provides incentive for cost 
saving only on the margin.  
6 For a more comprehensive review of the drivers and process of electricity restructuring in the United 
States, see Joskow (1997), U.S. Energy Information Agency (EIA) (2000), and EIA (2003).  
7 Nuclear generation is baseload designed. Whenever a nuclear plant is out of service, replacement power 
has to be procured to satisfy continuous supply.  
8 An outage due to infrastructure failure typically would require 35 to 60 days of idling of plant operation. 
In 1999, Con Edison paid more than $100 million for replacement power during a non-routine shutdown of 
Indian Point 2 (Pace Law School, 2001, http://law.pace.edu/energy/NuclearAccountabilityProject.html). 
9 According to EIA data, in 1996 the average O&M costs for nuclear, coal, and gas were 1.91c/kWh, 

1.81c/kWh, and 3.38c /kWh, respectively. 
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competitive and faces the risk of early retirement. Two other studies state that up to 40% 
of U.S. nuclear capacity could have marginal expenses that are higher than competitive 
market prices.10 

 

To make a profit in a competitive market, baseload nuclear plants must attempt to (1) 
maximize total electricity output (MWh) during the year—that is, the capacity factor—to 
cover fixed O&M costs and to reduce replacement power costs and (2) minimize the 
operating cost per MWh ($/MWh) to compete with large, coal-fired plants. As expected, 
improvements that have already taken place in the nuclear industry took the form of 
fewer unplanned outages, shorter refueling times, and a reduced workforce. Anecdotal 
evidence suggests that much of these improvements in the operating performance of the 
nuclear sector by 1998 stemmed from reducing its use of contract personnel by bringing 
work in-house, training workers to perform multiple functions, and sharing best practices 
in the industry, and by successful power uprates (the practice of squeezing more power 
out of generators through advanced techniques). 11  Since these activities, especially 
staffing decisions and human capital training, take time to achieve, plants would have 
taken actions to prepare for competition even before being subject to true competition. As 
Eugene Grecheck, vice president of nuclear support services for Dominion Energy, Inc., 
pointed out, “The prospect of electricity market competition has been an important driver 
of this improvement in the industry.”  

 
There may be efficiency spillover effects from restructured to unrestructured plants 

through knowledge sharing or if cost reduction in restructured states puts pressure on rate 
adjustment in neighboring, unrestructured states. Without estimating the positive 
externality of restructuring, I only measure a lower bound of restructuring benefits.  

 

III. Econometric Models  

This paper is most related to MRW (2004), which analyzes the impact of electricity 
restructuring on the efficiency of fossil fuel-fired generating units. They estimate plant-
level annual input demand functions for fuel and non-fuel expenses using restructuring 
indicator variables to pick up the shock from regulatory reform. They find plants affected 
by restructuring experienced 5–20% more cost reduction than unaffected plants.  

Compared to MRW (2004), this study uses a different empirical strategy that is 
similar to Joskow and Schemalensee (1987). The latter assesses each observation of a 
plant’s productivity at each given time as a function of a series of plant-specific attributes 

                                                 
10 The two studies are “Need for Natural Gas Increases with More Nuclear Plant Shutdowns” by the 
Washington International Energy Group, Washington, DC, May 1998, and Nuclear Week, December 11 
1997, p.6. 
11After 1998, industry consolidation became the primary driver in improving the industry’s operating 
performance. Single unit or small plants were sold to larger and more experienced nuclear operators that 
had the resources and management skills to run plants well. Since many plants were divested to nonutilities, 
plant cost data are incomplete after 1998 (nonutilities are not required to report operating cost data to 
FERC). Dropping these plants leads to nonorthogonal sample selection if divested plants systematically 
differ from the others. In light of this consideration, I confine my analysis to 1992–1998.  
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(such as the plant’s age, vintage, scale, operating practices, and coal quality) and 
institutional characteristics. This approach provides measures of both allocation and 
technical efficiency without requiring a specific assumption for production behavior.  

This study also is related to Marie (1996). Marie explores whether incentive 
regulation (IR) programs improve the operating performance of nuclear generating units 
during 1988–1992.12 Marie finds that units with prior poor performance were more likely 
to have incentive regulation imposed upon them. He then uses the average production 
cost of the three-calendar-year before the imposition of incentive regulation as an 
instrumental variable for IR. 13 He did not find an inverse relationship between IR and 
plant production cost.  

Other related studies include Knittel (2002), who estimates the effects of an IR 
program within a stochastic frontier framework using a dataset spanning 1981 to 1996 for 
fossil fuel-fired plants. He finds that an IR program potentially could save 9.53% to 
17.57% of input costs. Kleit and Terrell (2001) use a Bayesian stochastic frontier model 
to compute the inefficiency measures for natural gas-fired plants using 1996 data. They 
conclude that plants potentially could reduce costs by up to 13% by restructuring.  

III (i) Variables and the One-Stage Estimation 

I use capacity factor (%) and annual per unit average production cost ($/MWh) as 
measures of operating efficiency. Capacity factor is defined as the actual generation 
divided by the product of nameplate capacity and the number of hours in the year. Per 
unit average production cost is the ratio of annual fuel cost plus O&M costs to annual 
output of that plant. Cost data were derived directly from FERC Form 1, which defines 
O&M costs as all nonfuel operating expenditures (labor, material, and services) excluding 
capital costs.14  

Capital costs always present one of the major measurement difficulties in 
productivity studies. Being durable inputs that are not fully consumed in one period, the 
costs have to be depreciated over a lifetime. Given capital typically is chosen at the time 
of facility recovery or power uprates and it is changed relatively infrequently. Following 
MRW(2004), I combine information on plant major non-routine shutdowns and power 
uprates to define plant-epochs such that within each plant-epoch capital stock and its 

                                                 
12 Since the late 1970s, many states have adopted an array of incentive regulation programs as alternatives 
to rate-of-return control, such as rate of return range programs that allow prices to fluctuate less 
proportionally with changes in costs or yardstick competition programs that determine a utility’s prices 
based on the costs of comparable utilities. For a more detailed discussion of incentive regulation, see 
Joskow and Schmalensee (1986).  
13 It remains unclear whether this instrument can be treated as exogenous. Annual costs are likely to be 
serially correlated and jointly determined by unobservable plant-specific characteristics. In this case, the 
instrument is correlated with error term.   
14 According to Bowers et al. (1987), approximately 67% of the total reported O&M costs of nuclear plants 
are labor related (performing engineering, security, administrative, and managerial activities) and the 
remaining 33% of expenditures are for maintenance materials and supplies. However, because there are no 
reliable labor cost data available, it is not possible to analyze separately how different components of 
production cost vary with restructuring activities. 
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impact on plant efficiency are assumed to be approximately constant. 15 

In an effort to better approximate the variation in competitive pressure, I construct 
two dummy variables to differentiate three different regulatory statuses: “no action,” 
“consideration,” and “action.” Following Ando and Palmer (1998), a state moves from no 
action to consideration when any one of the following three things happen: (1) the public 
utility commission (PUC) initiates a formal inquiry into the possibility of allowing retail 
competition; (2) PUC-endorsed informal stakeholder discussions begin that are oriented 
toward policy recommendations and that either take place over a period greater than one 
month or produce a report that is taken up by PUC; or (3) a PUC staff report is issued 
with recommendations regarding retail competition. The state moves to action status 
when: (1) it issues a final order that contains a date by which all PUC-regulated utilities 
in the state must open their markets to retail competition; or (2) the PUC has required 
retail restructuring filings from its regulated utilities in preparation for competition by a 
particular date, even if it has not yet issued a final comprehensive order.   

For plant-epoch i in year t, the following one-stage regression model is defined: 

 
1998 30

0 1 2

1993 1

con act

it it it i it t t j j i it

t j

Y D D Z X T Lβ β β γ π δ ν α ε
= =

= + + + + + + + +∑ ∑  (1.1) 

where the dependent variable Yit is either the capacity factor or log of the per unit average 
production cost of the plant-epoch i in year t. Hereafter, i indexes plant-epoch and t 
indexes the calendar year.  

 

con

itD  and act

itD  are the two regulatory variables. 
con

itD  takes the value 1 when the plant 

is facing a restructuring plan (‘consideration’), 0 otherwise; act

itD takes the value 1 when 

the plant is or to be restructured (‘action’), 0 otherwise.  
 

I control a vector of time-invariant plant-epoch specific variables Zi that determines 
the performance of a power plant. Zi includes: PWRi,, a dummy variable equal to 1 if the 
plant uses pressured water reactor (PWR), 0 if it uses boiling water reactor; VINTAGEi is 
the capacity-weighted average of the vintages (the year of initial operation) of the units 
comprising the plant minus 1969—the year the first nuclear power unit in the country 
was brought online. I allow the variable VINTAGEi to enter with a flexible polynomial 
specification but find that a linear specification exhausts its explanatory power. UNITSi is 
the number of units comprising the plant. LnCi is the log of a plant-epoch’s nameplate 
capacity in megawatts. LnCi

2 is square of LnCi. The number of units and nameplate 
capacity are controlled to capture possible economies or diseconomies of scale. 

 

Xit is a vector of time-varying variables that includes: INCENTIVEit is a dummy 
variable with value 1 if there is an IR program imposed on the plant-year. It is necessary 
to control for the effects of incentive programs since previous studies suggest incentive 
programs potentially can explain variations in productivity (Knittel, 2002).16 AGEit is 

                                                 
15 Specifically, I assign a unique identifier i, to each plant. Any time the plant experienced a shutdown 
longer than half a year or a change in rated capacity, I created a new identifier and the corresponding new 
plant-epoch.  
16 There might be collinearity between the presence of incentive programs and regulatory status; that is, 
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calculated as the capacity-weighted average of the ages of the individual units comprising 
the plant. I estimate the model allowing AGEit to enter with a quadratic specification.

17  
 

I include year-specific dummy variables Tt (t = 1993, 1994,…, 1998) to pick up 
exogenous effects common to the plants, such as technical progress or changes in Nuclear 
Regulatory Commission control. For completeness, I also control for state fixed effects 
that, as it turns out, deplete explaining power while changing the coefficients of interests 
only slightly.  

 

iα  is assumed to be an unobservable plant-epoch level time-invariant fixed effect.18 

iα  controls plants’ heterogeneity in initial design, construction, and other unobservable 

fixed characteristics that affect a plant’s intrinsic productivity. itε  is assumed to be an 

idiosyncratic shock to operating performance drawn from an identical and independent 

distribution ),0(~ 2
εσε Nit . 19  Both iα and itε  are unobservable. νδπγβββ ,,,,,, 210  are 

coefficients.  

III (ii) Policy Endogeneity and Instrumental Variables 

A critical issue affecting the empirical analysis of public policy is the potential 
endogeneity of the policies under study. As stated in Section 2, retail rate disparity 
between states is one of the two major driving forces of market restructuring. California 
and many states in the Northeast, which were among the first to move toward 
restructuring, are also the states with prices well above the national average and with 
densely distributed nuclear power plants. The high concentration of nuclear power plants 
suggests that electricity prices are closely correlated with nuclear plants’ performance. If 
the poor performance of nuclear power plants contributed to high prices, which is 
suggested by the estimation of Varley and Paffenbarger (1998), and in turn motivated 

restructuring, the restructuring decision was endoegenous and chosen partly on iα . That 

is [ | , ] 0con act

i it itE D Dα ≠ . A situation like this makes the “no action” group an invalid 

counterfactual. 
 

A Hausman test can provide information about the correlation between 
iα  and the 

                                                                                                                                                  
states that adopted incentive regulation may be more or less likely to advocate restructuring. Collinearity 
will result in relatively large standard errors, and the coefficients of two collinear variables often will be 
statistically insignificant. However, this is not the case based on the empirical estimates shown in section V. 
17 On the one hand, experience associated with learning by doing can lead to improvements in operating 
performance as length of service increases. On the other hand, operating efficiency tends to deteriorate and 
the plant experiences higher maintenance costs as it ages. Given that the incremental advantage from 
learning is diminishing over time, while the disadvantages of older equipment are rising, I expect that 
operating performance increases in the early stages and begins to fall after some critical age level. 
18 iα is allowed to change with facility repair and power uprates at the plant-level.  
19  Estimated average first-order autocorrelation coefficient ρ  indicates itε  is likely to be serially 

correlated. In capacity factor equation, ρ  is 0.30 in OLS model. In the average production cost equation, 

ρ  is 0.54 in OLS model. Likelihood ratio (LR) test shows evidence of cross-sectional heteroskedasticity. 

To obtain robust standard errors, I adjusted standard errors for clustering by plant in the following 
estimations.  
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other right-hand-side variables. If the Hausman test suggests that the cross-sectional error 

term iα  is correlated with at least one of the variables explaining the performance of 

plant i, both ordinary least squares (OLS) and general least squares (GLS) estimates 
would be biased and inconsistent. One can still obtain consistent coefficient estimates 
using a fixed effects model, although the estimation is inefficient.   

 
At first glance, a fixed effects model seems able to avoid this policy endogeneity 

problem. Even if market restructuring was adopted in response to inefficient production, 
we can still ask the question how changing market structure influences efficiency changes 
in a time series context as the previous efficiency level has been differenced out in a fixed 
effects model. However, a fixed effects model has two important defects: (1) the within-
group estimator is not fully efficient since it ignores variation across individuals in the 
sample; and (2) the more serious problem is that a fixed effects model can’t difference 
out time-varying components of the disturbance that are correlated with policy variables. 
For example, if we utilize a first-differencing equation (1.1) to eliminate the time-
invariant components, we get:  

                       it
t

ttit
act
it

con
itit TXDDY εδπββ ∆+∑+∆+=∆

=

+∆∆
1998

1993
21                                          (1.2) 

Although previous heterogeneity in efficiency level iα has been differenced out, if policy 

change itD∆  is a year-to-year response to changes in the outcome variable itY∆ , then 

itε∆ is not randomly distributed and fixed effects doesn’t address the fundamental 

problem associated with endogenously determined policy. Furthermore, as Besley and 
Case (2000) point out, any policy choice is purposeful action and rarely can be treated as 
exogenous. Since fixed effects model studies state policies as right-hand side variables, a 
concern remains if any time-varying economic or political conditions that simultaneously 
influence policy variables and policy outcomes are omitted and absorbed in the error term. 
Generally, by treating time-varying policy choices as exogenous, a fixed effects model 
leaves estimates open to potential simultaneity and omitted variable bias. 

 
Noting the pitfalls of a fixed effects model, I use instrumental variables to realize an 

alternative “pseudo” randomization device. The instrumental variables should be 

correlated with the restructuring decision but uncorrelated with 
iα  to create variation in 

regulatory status that is exogenous to a plant’s inherent productivity. “Pseudo” 
randomization manipulates a treatment and affects the outcome only indirectly through its 
manipulation of the treatment. If instrumental levels are randomly assigned to individuals, 
then the instrument may permit a consistent estimation of the effects caused by the 
treatment, even though the treatment assignment itself is far from random (Angrist, 
Imbens and Rubin, 1996; Angrist and Krueger, 2001).  

III (iii) Instrumental Variables and Hazard Model 

Assume there are other major determinants, IVj, of the market restructuring process in 

state j. If IV are uncorrelated with α , we can use IV as instrumental variables. Several 
papers analyzed the political economy of electricity restructuring (Ando and Palmer, 
1998; White, 1996; Andrews, 1999). Following previous empirical results, I identify the 
instrumental variables as a set of time-varying and time-invariant variables described 
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below.  
 
The size of the industrial customers, Sjt,, is measured by the share of total utility sales 

to industrial customers in state j in year t. Industrial customers compose an important 
interest group that would potentially benefit from market restructuring. The larger the 
size of this group, presumably the greater pressure it may place on decision makers to 
pursue electricity restructuring.   

 
The variable Mjt is the percentage of total electricity generation in state j in year t 

from municipal and rural cooperative utilities. This portion of generation is exempt from 
PUC regulation and would not be affected by market restructuring. The hypothesis is that 
the larger the Mjt, the less aggressive the PUC and large industrial consumers would be in 
promoting market restructuring.  

 
The average share of generation from hydropower in state j from 1991 to 1998 is 

represented by jH . The different natural resource endowments of hydropower to some 

extent contribute to rate differences across states. The production cost of hydropower is 
typically less than one-third of that of coal or nuclear. States with a larger percentage of 
hydropower usually enjoy lower electricity prices and presumably are less enthusiastic to 
pursue electricity restructuring. 

 
Republican control of state government, Rjt, is a dummy variable coded 1 when 

Republicans control both the governorship and the legislature in state j in year t. 
Ideologically, jurisdictions under Republican control may favor market restructuring 
more than those under Democratic control.  

 
A dummy variable PUCjt equals 1 if the PUC in state j and year t is appointed and 

equals 0 if it is elected. Ando and Palmer (1998) suggest that an elected PUC is more 
likely to promote retail competition as a favor to the voters who elected them.  

 
I also include the League of Conservation Voters’ (LCV) rating of each state’s federal 

senators and representatives from 1992 to 1998 based on their support for environmental 
initiatives. The size and strength of environmental groups may have an impact on the 
progress of market restructuring. 

 
Retail electricity prices, the import and export electricity price gap, and the 

magnitude of stranded costs are all highly correlated with a state’s rate of moving toward 
restructuring. However, these variables are potentially determined by plants’ historical 
performance and thus, are correlated with the inherent productivity of nuclear power 
plants. They are excluded from the two-stage least squares (2SLS) model. 

 
I use a multivariate discrete time proportional hazard model to approximate the 

probability of exiting the initial “no action” status in the first stage. There are two major 
reasons why this research issue cannot be addressed via probit or more straightforward 
OLS regression techniques. First, there is the problem of right censoring. Since the 
restructuring process is still very much ongoing, many states did not experience 
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restructuring during the study period 1992 to 1998 or experience restructuring after the 
observation period.  For a state that is subject to censoring, we cannot observe the exact 
duration of its initial status. The only thing we know from these states still in the initial 
state is that the duration lasted at least as long as the tracking period. A hazard model can 
handle the censored data using maximum likelihood estimation. The conditional 
likelihood for observation j can be written as: 

 
(1 )

( | ; ) [1 ( | ; )]j jd d

j j j jf t x F t xθ θ
−

−  (1.2) 

where dj   is the censoring indicator. dj = 1 if uncensored; dj  = 0 if censored. ( | ; )j jf t x θ  

is the probability of state j exiting from the “no action” status in year t conditional on its 

characteristics  xj. ( | ; )j jF t x θ is the conditional cumulative distribution function (cdf). It 

is the probability that state j stays in “no action” status up to year t conditional on its 
characteristics xj.  

 

       Given data on (tj, dj, xj) for a sample of size N, the MLE estimator of θ  is obtained by 
maximizing:  

 { }
1

log[ ( | ; )] (1 ) log[1 ( | ; ]
N

j j j j j j

j

d f t x d F t xθ θ
=

+ − −∑  (1.3) 

The MLE is consistent and asymptotically normal. 
 

The second reason to use the hazard model is that probit and OLS analyses only help 
inform the patterns observed for a particular snapshot in time. They ignore the 
information we have about how long it took the states to reach the statuses they occupy in 
that snapshot; the hazard model can use some of that information.  

 

Assume a hazard function is defined as ( ; ( ), , )tt W t Vλ η , where W(t) and V  are, 

respectively, the time-varying and time-invariant covariates described above, and tη  is 

the error term. 20  Let T denote the time until exit from the “no action” status (t is a 
particular outcome on T). We observe that T falls into one of the seven 

intervals 0 1 1 2 5[ , ),[ , ),...,[ , )a a a a a ∞ , where 0 1992a = and 5 1998a = . T is measured to the nearest 

year and treated as continuously distributed. I coded an unbalanced panel where each 
state-year observation is a vector of a binary indicator pm, equal to 1 if the duration ends 
in the interval m, and 0 otherwise; a binary censoring indicator d equals to 1 if the 
duration is censored in interval 6, and 0 otherwise; along with covariates W(t) and V. At 
each interval, the population is composed of states with a “no action” status. After exiting 
the initial status, I drop the state from the risk set.  

 
The conditional hazard function of a state at time t is given by: 

 
( | ( ), )

[ ; ( ), ]
1 ( | ( ), )

f t W t V
t W t V

F t W t V
λ =

−
 (1.4) 

                                                 
20 To be able to include the time-varying variables in the survival estimation, W(t) needs to be well-defined 

whether or not the state is in the initial status, i.e., W(t) is exogenous to the survival path. All of the 
instrumental variables in this paper satisfy strict exogeneity assumption.  
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where F(t|W(t), V) is the conditional cumulative distribution function (cdf) of T. 
F(t)=P(T ≤ t), t≥ a0. f(t|W(t),V) is the conditional probability of leaving the “no action” 

status in the interval [ , )mt a given survival up to t.  

 

Assume λ  is a proportional hazard of the form: 

 0 1[ ; ( ), ] [ ( ), ] ( ),   m mt W t V W t V t a t aλ φ λ −= ≤ ≤  (1.5) 

where ( ) 0φ ⋅ > is a nonnegative function of W(t) and V and 0( ) 0tλ > is the baseline 

hazard. The probabilities that states exit “no action” differ proportionately based on a 

function ( ( ), )W t Vφ  of observed covariates. The baseline hazard is common to all states in 

the risk set. Assuming that the hazard of exiting “no action” status is increasing over time, 
due to federal influence or policy imitation effects (Andrews, 1999; Henisz, Zelner, 
Bennet, and Mauro, 2004), I specify the baseline hazard model as a Weibull function, 
which is the only distribution with an accelerating failure time and proportional hazard. 

Its cdf is given by ( ) 1 exp( )F t tαγ= − − , where γ and α are nonnegative parameters. Using 

maximum likelihood estimation, I am able to estimate the coefficients associated with W 
and V and to predict the hazard rate at each point time.  

 
The proportional assumption assumes a log-linear relationship between the 

independent variables and the underlying hazard function. The 2SLS model is: 

 0log ( , ( ), ) log ( )t tt W t V W V tλ ϖ υ λ η= + + +  (1.6) 

 
1998 30

0

1993 1
itit IV i it t t j j i it

t j

Y D Z X T Lβ β γ π δ ν α ε
= =

= + + + + + + +∑ ∑  (1.7) 

where Wt and V are instrumental variables used in the first stage, and 
IVD is the predicted 

probability of the state where plant i is located moving from “no action” to 
“consideration” of market restructuring at time t, taking into account right censoring and 
how long the state has been with the initial status. Because both stages are linear in nature, 

the estimation of β  is consistent.   

IV. Data Sources and Descriptive Statistics 
 
This study is based on an unbalanced panel dataset of plant-level output and 

production costs taken at yearly intervals, as well as a variety of plant-specific 
characteristics. The data are from the years 1992 to 1998 for all 73 investor-owned 
nuclear power plants in the United States and were collected from FERC Form 1. 
Production cost is adjusted to real terms using a 5% discount rate and presented in 1992 
dollars. The data sources are described in Appendix A.  

 

Table 1 reports the number of plants falling into “no action”, “consideration,” and 
“action” groups in each year. Table 1 shows there are rich variations in plants’ regulatory 
status in both longitudinal and cross-sectional dimensions. Table 2 lists the summary 
statistics of the variables. 

 

I divide the sample into three groups based on plants’ regulatory status in 1998. Table 
3a reports mean value and mean differences in plant characteristics between groups. 
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Although there are no statistically significant differences in most of the plant 
characteristics, “no action” plants were more often subject to incentive regulation and 
more likely to be PWR plants, leading to concerns about the fundamental differences in 
plants’ operating performance between “no action” and restructuring groups.21 Table 3b 
reports mean, mean differences in capacity factor and per unit average production cost 
before and after restructuring, the corresponding percentage change, and the differences 
in percentage changes among the three groups. The larger percentage increase in the 
capacity factor of restructuring plants (“consideration” and “action”) is significant at 5%, 
and the greater decrease in per unit average production cost of restructuring plants is 
significant at 1%. Notably, there is no preexisting difference in capacity factor between 
the “no action” group and the “action” group, while the “action” group has a statistically 
significant higher per unit average production cost in the pre-restructuring period. These 
aggregate statistics provide suggestive evidence of: (1) the positive relationship between 
restructuring and improvements in operating efficiency; and (2) a selection process based 
on previous cost performance.  

 

Table 4 presents the summary statistics of instrumental variables. The instrumental 
variables are designed to capture the variation in states’ political and economic conditions 
that result in different rates of restructuring. However, the variation of instruments in the 
time series is not as rich as that in the cross-sectional dimension. Consequently, these 
instrumental variables may not be able to separately identify for each state the change in 
status from “consideration” to “action.” Thus, in the instrumental variable model, I 
estimate the effects of a regulatory status change from “no action” to restructuring 
(“consideration” and “action”).  

V. Empirical Estimates 

V (i) Conventional One-Stage Estimates 

Tables 5 and 6 report the results from estimating equation (1.1) via OLS, GLS, and a 
fixed effects model with capacity factor and the natural logarithm of unit production cost 
as the dependent variables, respectively.  

 
When using capacity factor as the dependent variable, the estimation results are 

largely insensitive to the choice of model. It is not surprising that the Hausman test fails 

to reject the hypothesis that the unobserved variable iα is uncorrelated with the other 

independent variables at the 1% level, implying that unobservable plant heterogeneity is 
uncorrelated with virtually all other observable determinants of operating efficiency.  In 

this case, 
iα  can be considered part of the error term and a random effects specification 

yields consistent and efficient estimation.  
 
  The dummy variables Dact  and  Dcon, indicating the regulatory and market structure, 

emerge as the two main explanations for the cross-state and time variation in capacity 

                                                 
21 Knittel (2002) finds an inverse relationship between input costs and an IR program. Most of the IR 
programs became effective in mid-1980s. Marie (1996) finds BWR’s operating and maintenance 
expenditures are higher on average.  
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factor. Specifically, the results suggest that restructuring or the positive prospect of 
market restructuring increases operating efficiency as measured by the plant’s capacity 
factor. Conditioning on other exogenous variables, the adoption of restructuring yields an 
average 9.1 percentage points increase in capacity factor, ceteris paribus; the positive 
consideration of restructuring yields an average 5.7 percentage points increase in capacity 
factor, ceteris paribus.  

 
Estimates from the fixed effects model are lower than those of the random effects 

model. This is because a fixed effects regression identifies variation from within-group 
and ignores between-group (cross-section) variation; thus, it picks up only the 
performance change of the same plant before and after regulatory status change (time 
series). In contrast, random effects report the average effect of regulatory status change 
within the same plant and across groups.  

 
As seen in Table 6, when the natural logarithm of unit production cost is the 

dependent variable, the dummy variable estimates are very sensitive to model 
specification and occasionally have an unanticipated sign. A Hausman test suggests that 
the cross-sectional error term is correlated with at least one of the explanatory variables, 
indicating that estimates from the OLS and the random effects model are biased and 
inconsistent. The OLS and cross-sectional models’ dummy variable coefficient estimates 
are lower in absolute value than those of the fixed effects model. This is noteworthy 
because it provides yet more evidence of a selection process based on historical cost 
performance. This is proven below. Assume that if a plant is being restructured, we 

observe the cost 1

ity , otherwise we observe 0

ity . Here, we try to measure the treatment 

effect of restructuring (the specifications below are the same as in Section 5): 

 1 0 1 0( | , , ) ( | , , ) ( , ) ( , )i i i i i i i iE y X Z E y X Z y X Z y X Zα α− = −  (1.8) 

However, for cross-sectional comparison, we have only: 

 1 0( | , , , 1) ( | , , , 0)i i i i j j j jE y X Z D E y X Z Dα α= − =  (1.9) 

where D is the indicator variable. D = 1 if a plant is restructured, and D = 0 if a plant is 
not restructured.  

 
From Table 6, we see that the restructured and control groups have similar values in 

all the observable plants’ specific characteristics. Thus, equation (1.9) can be further 
written as: 

 

1 0

1 0 1 0

( | , , , 1) ( | , , , 0)

    ( , ) ( , ) ( | , 1) ( |, , 0)

i i i i j j j j

i i j j

E y X Z D E y X Z D

y X Z y X Z E y D E y D

α α

α α

= − =

= − + = − =
 (1.10) 

The right-hand side of equations (1.8) and (1.10) are the same if: 

 1 0( | , 1) ( | , 0)i i j jE y D E y Dα α= = =  (1.11) 

However, if α is a selector variable which determines a plant’s cost performance 
such that if it falls into some region, a state would consider or implement restructuring; if 

it falls into the complement, no action for restructuring. If α  associated with the 

restructured group systematically induced a higher cost than that induced by the α  that is 

associated with the control group, i.e., 1 0( | , 1) ( | , 0) 0i i j jE y D E y Dα α= − = > , the 
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estimation of the treatment effect based on OLS or GLS is biased downward. The fact 
that estimates from the OLS and the cross-sectional model are lower than those from the 
fixed effects model suggests that the assignment to treatment and control is dependent on 

the plant’s unobservable determinants of cost (α ), and the treatment group historically 
had a higher level of production cost.  

 
In this case, only the fixed effects model provides unbiased estimation on the 

subpopulation of the treatment group, although the estimates are inefficient and the 
effects of time-invariant variables are all absorbed. Because the key variables of interest 
are the two time-varying dummy variables Dcon and Dact, the focus in the remainder of the 
paper will be only on the fixed effects model when considering the correlation between 
restructuring and cost performance.  

 
 Interpreting the results from the fixed effects model, the coefficient estimates for the 

dummy variables Dcon and Dact imply that on average a 10% cost saving can be achieved 
by positively considering restructuring and another 10% cost saving can be realized by 
implementing restructuring.22  However, the effects are not statistically significant.   

 
Dropping outliers based on cost information, I report year effects of unit production 

cost for groups “no action” and “restructured” respectively in figure 1. The vertical axis is 
year-by-year change in natural log of unit production cost. They are the residual values 
from re-estimating equation (1.1) for each group separately without including the 
regulatory status dummy variable and fixed-year effects dummy variables. Figure 4 
suggests an industry-wide improving trend in cost performance since 1991, a period when 
the industry was facing increasing competitive pressure due to market restructuring. 
Figure 4 also shows that comparing to the “no action” group, the “restructured” group is 
associated with a higher rate of improvement.  

 
Although we can observe visually in Figure 1 the difference between the restructured 

and the control group in the change of cost performance, the estimates on the dummy 
variables are not statistically significantly different from 0. One explanation is that the 
average effect of restructuring on reducing costs may vary in the population. Due to 
policy endogeneity, a one-stage, regression-adjusted association between the plant’s cost 
and restructuring is weak because we estimate only the effect on the subpopulation that is 
at an inherent disadvantage in improving cost performance.  

 
The estimates of plant-specific effects largely are consistent with previous studies. 

Incentive programs have a significant positive effect on a plant’s capacity factor but not 
on cost. The estimates of AGE and AGE2 show that the performance improves over the 
range of ages of the plants included in the data; however, it might improve at a declining 
rate, implying diminishing returns. Estimated coefficients of VINTAGE demonstrate that 
technological improvements induce higher operating efficiency over time. Multi-unit 
plants have better performance on the basis of cost estimates. Finally, there is evidence to 
suggest economies of scale as larger nameplate capacity induces a higher capacity factor 

                                                 
22 I use [exp( β )-1]*100 to approximate the percentage effect of Dcon and Dact on unit production cost.  
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and lower average production cost, although the effect is decreasing with the increasing 
of the scale.  

V (ii) Hazard Model and 2SLS Estimates 

Taking into account the policy endogeneity problem and the pitfall of the fixed effects 
model, I use 2SLS (IV/2SLS) for cost analysis.23  The results from the first-stage hazard 
model analysis are reported in Table 7, and the 2SLS estimates are reported in Table 8.  

 
In the first-stage hazard model analysis, the estimation of the Weibull parameter is 

greater than 1 (P = 2.28), which means the hazard (the probability of being restructured) 
is monotonically increasing (the hazard everywhere exhibits positive duration 
dependence). Provided we believe that the restructuring process was actively being 
pushed forward across the country from 1992 to 1998, the assumptions inherent in the 
Weibull distribution seem reasonable for capturing duration dependence.  

 
After using instrumental variables to address the endogeneity problem, the coefficient 

estimates for the restructuring effort dummy variable show a statistically significant 
impact on cost saving. Plants that are more likely to be restructured have on average a 
statistically significant lower unit production cost. Specifically, the result indicates that 
when the probability of moving toward restructuring (“consideration”) increases by 10%, 
the unit production cost decreases on average 8.3%. However, the results reflect only the 
local average treatment effects based on the variance present in the sample.  

V (iii) Source of Productivity Improvements 

In this section, I estimate the relationship between regulatory status and the 
investments on power uprates. I argue that one source of post-restructuring productivity 
improvements is the increased adoption of advanced technology.  

 
I aggregate plant-level power uprates data into state-level data and control for state 

GDP, population, median household income, and fixed-year effects. I conduct a random 
effects and probit analysis using the magnitude and frequency of power uprates from 
1992 to 1998 as dependent variables. To indicate state regulatory status, first I include in 
the model two dummy variables, Dcon and Dact, with the same definition as before. Second, 
I use only one dummy variable, DDereg, which equals 1 if the state is either considering or 
has passed a restructuring plan and 0 otherwise.  The results are reported in Table 9. In 
both analyses, the dummy variables indicate a positive relationship between restructuring 
and the probability and magnitude of power uprates. A state moving toward restructuring 
increases capacity 1.09 percentage points higher than a state that is less likely to be 
restructured and has a statistically significant higher probability of investment in power 
uprates, ceteris paribus. The positive relationship between the adoption of advanced 
technology and restructuring can partially explain the mechanism through which 
restructuring improved operating efficiency.  

                                                 
23 I also use IV/2SLS to estimate the effect of restructuring on capacity factors. The estimates show the 
expected sign, although it is insignificant. This is possibly explained by the selection problem not being 
salient to capacity factor performance and the variance in the sample being reduced by using instruments.  
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V (iv) Robust Check 

A. Regression to the Mean 

In this subsection, I test whether the above results can be explained by a regression to 
the mean phenomenon—that is, if plants’ capacity factor or unit production costs are 
normally distributed, inefficient plants tend to catch up to better operated plants, and they 
both revert to the mean. If this is true, we should observe cross-section dispersion 
diminishing over time. As a straightforward test, I examine directly the cross-section 
distributions of operating performance over time.  I normalize the capacity factor and 
production cost of each plant by dividing them by the industry average value of that year. 
If a plant performs at the average level, it should have an index equal to 1. The kernel 
density distribution of the normalized capacity factor and production cost of different 
years is shown in Figure 2. The key message from the figures is that the cross-section 
distributions do not appear to be collapsing. This is especially distinct in the case of 
capacity factor: the industry continues to display significant cross-sectional dispersion, 
with more plants moving away from the mean. If there were a regression to the mean 
phenomenon, we would not expect to see this sequence of change in capacity factor and 
unit production cost.   

B. Alternative Specification of Regulatory Status 

In addition to use the two dummy variables Dcon and Dact to proxy a plant’s 
expectation of restructuring, I also use some alternative measures of the change of market 
structure in the one-stage regression as provided in Equation (1.1) (using capacity factor 
as the dependent variable in a random effects model and using natural log of unit 
production cost as the dependent variable in a fixed effects model). The first row of Table 
10 shows the coefficient estimates for a variable “lawdate,” which represents the calendar 
year when the state’s restructuring law was passed. The second row shows estimates for 
the variable “time”, which measures the number of years left to pass a restructuring law. 
The estimates show the same sign as the measures in tables 5 and 6, although the 
magnitude is smaller because it ignores other signals of regulatory change, such as formal 
hearings by the PUC or a utility shareholder restructuring initiative that may also 
influence a plant's expectations of market structure change and its operating behavior.  

C. Utility-Level Results 

The previous specification assumes that each plant-level observation is an 
independent observation. However, it is likely that operational decisions are made at the 
utility level and plants operated by the same utility have similar operating efficiency. The 
performances of those plants owned by the same utility are likely to be strongly 
correlated. This correlation would suggest that estimating efficiency at the plant level and 
treating each observation as independent would tend to understate the standard errors. If 
plants owned by the same utility are strongly correlated, treating each plant observation 
as independent would tend to reduce the standard error. In addition, “labor sharing” could 
be an issue of measurement error if labor was shared across multiple plants of a utility but 
was reported as belonging to one particular plant. To account for these, I use utility-level 
data for robust checks. To account for this, I estimate the previous models using utility-
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level data. Specifically, I crosslink the FERC Form 1 and EIA-860 data set to identify the 
utility to which a plant belongs. I sum output and cost across commonly owned plants for 
a given utility and year to create a utility-level observation for each year. I then use these 
data to estimate the correlation between regulatory status and operating efficiency. The 
estimates are reported in Table 12, which demonstrates that the conclusions from the 
plant-level analysis are robust. 24 

D. Attrition 

Five nuclear power plants have been permanently shut down from 1992 to 1998. If 
the five plants dropped from the sample had been systematically lower in efficiency 
relative to the other plants in the sample, it is possible another selection bias may 
contaminate the estimates. To assess the impact of attrition, I re-estimate previous 
specifications based on a balanced panel data, in which case the sample was restricted to 
plants that were in the data set in 1998. The results for this sample are for the most part 
very similar to the results for the full sample, suggesting that there is no selection bias 
due to this amount of attrition.  

 

VI. Conclusion 

To provide a new perspective on the debate on the efficacy of electricity market 
restructuring, this paper complements the existing literature by providing the first 
empirical evidence of operating efficiency gains in the nuclear power industry during and 
after electricity market restructuring in the U.S. This paper highlights policy endogeneity 
problem for evaluating regulatory reform that has received little attention from previous 
literature in electricity industry. Based on the most detailed data available on the 
restructuring process in the U.S., the paper also distinguishes between the regulatory 
difference “no action” and “consideration”. 

 
It is demonstrated that market restructuring does deserve some credit for the U.S. 

nuclear power industry’s resurgence after 1990. Using generation, cost, and regulatory 
status data for each plant from 1992 to 1998, I calculate a 9.1 percentage points and 5.7 
percentage points increase in capacity factor for the plants in states restructured and soon 
to be restructured, respectively. This increase in capacity factor implies a net generation 
gain of 629 billion kilowatt hours during the study period. After controlling for 
nonrandom adoption of restructuring, a 8.3% cost saving is significantly correlated with a 
10% increase in the probability of moving toward restructuring. This means a total cost 
saving of $3.8 billion over the seven study years. Restructuring has also had an intriguing 
effect on promoting technology adoption in the form of power uprates. Plants in 
restructured states are more likely to apply for uprates and, on average, adopt larger 
magnitude of power uprates.  

 

                                                 
24 Some utilities’ service territory spreads to more than one state. I found separately characterizing “mixed” 
regulation had very little impact on the results.  
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Based on the above analysis, electricity market restructuring has achieved some 
remarkable successes. However, whether it is successful in achieving its original goals 
depends on how much of this productivity improvement resulted in consumer benefits. 
This will be an interesting topic for further research.  
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Figure 1.  Year Effects of Unit Production Cost by Regulatory Status 

-1
-.
5

0
.5

1

1980 1985 1990 1995 2000
year

restructured noaction

 



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

2
3
 

F
ig
u
re
 2
. 
 D
e
n
s
it
y
 o
f 
N
o
rm

a
li
z
e
d
 C
a
p
a
c
it
y
 F
a
c
to
r 
a
n
d
 U
n
it
 P
ro
d
u
c
ti
o
n
 C
o
s
t—

1
9
8
2
, 
1
9
9
2
, 
1
9
9
5
, 
1
9
9
8
 

0123
Kernel Density

0
.5

1
1
.5

2
N
o
rm
a
liz
e
d
 C
a
p
a
c
ity
 F
a
c
to
r

Y
e
a
r1
9
8
2

Y
e
a
r1
9
9
2

Y
e
a
r1
9
9
8

0123
Kernel Density

0
.5

1
1
.5

N
o
rm
a
liz
e
d
 C
a
p
a
c
ity
 F
a
c
to
r

Y
e
a
r1
9
9
5

Y
e
a
r1
9
9
8

0.511.52
Kernel Density

0
1

2
3

4
N
o
rm
a
liz
e
d
 U
n
it 
P
ro
d
u
c
ti
o
n
 C
o
st

Y
e
a
r1
9
8
2

Y
e
a
r1
9
9
2

Y
e
a
r1
9
9
8

0.511.52
Kernel Density

0
1

2
3

4
N
o
rm
a
liz
e
d
 U
n
it 
P
ro
d
u
c
ti
o
n
 C
o
st

Y
e
a
r1
9
9
5

Y
e
a
r1
9
9
8



                                                                    

24 

Table 1. Regulatory Status: Plant-Year Observation 
Year Obs. No Action Consideration Action 

1992 72 70 2 0 

1993 71 65 6 0 

1994 71 38 31 0 

1995 71 19 50 2 

1996 72 16 45 11 

1997 70 14 31 25 

1998 68 14 30 24 

 

 
 

Table 2. Summary Statistics of Plant-Level Data 
 

Variable         Mean Std. Dev. Min Max 

Capacity Factor (%) 0.71 0.17 0.06 0.98 

Average production cost ($/MWh) 22.36 29.35 8.04 525.65 

Incentive Regulation 0.59 0.49 0 1 

PWR Reactor 0.65 0.48 0 1 

Units 1.57 0.64 1 3 

Vintage 1978 6.84 1963 1996 

Nameplate Capacity (MWh) 1520.59 777.73 75 4210 

Age (year) 15.96 7.05 0 34 

Obs. 483 
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Table 3a Plant Characteristics by Regulatory Status in 1998 

Mean Differences in Means 
Variable 

No Action Consideration Action 
N vs. C  
(1) 

N vs. A 
(2) 

C vs. A 
(3) 

Incentive Regulation .71 
(.46) 

.57 
(.50) 

.61 
(.04) 

-.14** -.11 .02 

PWR Reactor .75 
(.43) 

.69 
(.46) 

.52 
(.50) 

-.11 -.23** -.17** 

Units 1.65 
(.63) 

1.65 
(.66) 

1.52 
(.65) 

-.005 -.13 -.13 

Vintage 1979.7 
(5.6) 

1980.2 
(6.6) 

1978.8 
(7.1) 

1.04 -.006 -1.38 

Nameplate Capacity 
(MWh) 

1625.5 
(801.5) 

1556.5 
(661.5) 

1483.6 
(883.9) 

-69.0 -141.9 -72.9 

Age (year) 15.9 
(5.8) 

14.8 
(6.9) 

16.2 
(7.2) 

-1.1 .3 1.4 

 
Table 3b Mean Capacity Factor and Average Production Cost by 1998 Regulatory Status  

Mean Capacity Factor (%) Differences in Means 
Time 

No Action Consideration Action (Percentage Points) 

 Obs. N=13 Obs. N=30 Obs. N=24 

  n = 130 n = 251 n= 218 

N vs.C 
(1) 

N vs. A 
(2) 

C vs. A 
(3) 

55.79 60.28 55.07 
1981-1991 

(14.12) (9.66) (9.96) 
4.49** -0.72 -5.20** 

 Obs. N = 13 Obs. N = 30 Obs. N = 24 

  n = 91 n = 210 n = 168 
N vs.C N vs. A C vs. A 

67.89 74.64 71.44 
1992-1998 

(13.17) (8.7) (11.57) 
6.89** 3.55** -3.12** 

27.96% 29.39% 33.91% 
Change 

(0.3414) (0.1895) (0.3365) 
1.43** 5.95* 4.52* 

Mean Average production cost ($/MWh) Differences in Means 
Time 

No Action Consider Action ($/MWh) 

 Obs. N = 13  Obs. N= 30  Obs. N = 24 

          n = 130 n = 282 n = 228 

N vs.C 
(1) 

N vs. A 
(2) 

C vs. A 
(3) 

30.91 32.73 42 
1981-1991 

(9.13) (14.95) (20.29) 
1.82 11.09*** 9.26*** 

 Obs. N = 13  Obs. = 30 Obs. = 24 

          n = 91 n = 210 n = 167 
N vs.C N vs. A C vs. A 

19.69 17.35 19.46 
1992-1998 

(9.04) (10.82) (6.36) 
-2.34 -0.23 2.11** 

-33.83% -44.85% -45.67% 
Change 

(0.2406) (0.2483) (0.2372) 
-11.01*** 11.82*** -0.82 

 
Note: Plants are categorized into three subgroups “no action” (N), “consideration” (C) and 
“action” (A), based on their regulatory statuses in 1998. Standard errors are in parentheses. 
Column (1) of “Differences in Means” presents mean difference in the values between plants 
which fall into “no action” and “consideration” category in 1998; Column (2) and (3) report the 
analogous calculations for plants in “no action” and “action” group; and “consideration” and 
“action” group respectively. Using (ANOVA) models for multiple-comparison test, *** indicates 
significant at the 1% level; ** indicates significant at the 5% level,*indicates significant at the 
10% level. Using a 5% discount rate, costs are in 1992 dollars. 
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Table 4. Summary Statistics of Instrumental Variables 
 

 

Variable  Mean Std. Dev. Min Max 

Year overall 1995 2.00 1992 1998 

      

overall .327 .100 .099 .550 

between  .097 .105 .496 
Industry Consumer (%) 

(IndSize) 
within  .022 .170 .459 

      

overall .222 .416 0 1 

between  .282 0 1 
Republican Control 

(Repub) 
within  .305 -.634 1.079 

      

overall .851 .357 0 1 

between  .349 0 1 
PUC Appointed 

(PUC) 
within  .059 .422 1.421 

      

overall .514 .209 .07 .97 

between  .189 .144 .892 
LCV Rating 

(LCV) 
within  .093 .033 .862 

      

Hydroelectricity (%) overall .064 .117 0 .853 

(Hydro) between  .138 0 .795 

 within  .014 -.039 .155 

      

overall .213 .214 .014 1 

between  .222 .014 1 
Municipal Electricity (%) 

(Muni) 
within  .025 -.025 .330 

Obs.  395 
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Table 5.  Determinants of Capacity Factor 
 

Coefficients 
Independent Variables 

OLS Fixed Effects Random Effects 

 
Dummy variable D

con 
 

.0521 ** 
 

.0484*    
 

.0568** 
 (0.0254) (.0293)      .0268 
    
Dummy variable D

act 
.0783 ** .0797*    .0912** 

 (.0254) (.0438)      (.0399) 
    
PWR .0485** NA .0528* 
 (.0196) -- (.0311) 
    
VINTAGE .0103 NA .0078 
 (.0066) -- (.0073) 
    
UNITS .0142 NA .0186 
 (.0275) -- (.0479) 
    
INCENTIVE .0451** .0500     .0409* 
 (.0182) (.0415)      (.0248) 
    
LnC -.0619 -.0188*    -.0678* 
 (.0362) (.2504)     (.0649) 
    
AGE .0137 .0156 .0137 
 (.0092) (.0114)      (.0112) 
    
AGE

2 
-.0002 -.0003    -.0003 

 (.0002) (.0003)     (.0003) 
    
Year 1993 .0065 .0035    .0050 
 (.0264) (.0261)      (.0234) 
    
Year 1994 .0063 .0064    .0045 
 (.0278) (.0259)      (.0265) 
    
Year 1995 .0169 .0190    .0153 
 (.0279) (.0267)      (.0248) 
    
Year 1996 -.0090 -.0048    -.0060 
 (.0299) (.0259)     (.0233) 
    
Year 1997 -.0652 -.0619**    -.0618 
 (.0389) (.0266)     (.0244) 
    
Year 1998 NA NA NA 
 -- -- -- 
    
Constant -19.5076 .6274    -14.4623 
 (13.0365) (1.785)      (14.4540) 
    
Adjusted R-Squared 0.0724 0.0435 NA 
Obs. 495 
    

 
Note:  

1. Standard errors clustered by plant in parentheses.  
2. ** significant at the 5% level, * significant at the 10% level.  
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Table 6.  Determinants of Natural Logarithm of Unit Production Cost 
 

Coefficients 
Independent Variables 

OLS Fixed Effects Random Effects 

 
Dummy variable D

con 
 

-.0852 
 

-.1049   
 

-.0853    
 (.0601) (.0616)     (.0711)    
    
Dummy variable D

act 
.0430 -.1045    -.0057  

 (.0827) (.0994)     (.0976)     
    
PWR -.1170** NA -.1406**    
 (.0410) -- (.0616)     
    
VINTAGE -.0830*** NA -.0886    
 (.0128) -- (.0126)     
    
UNITS -.0730 NA -.1255    
 (.0778) -- (.0988)     
    
INCENTIVE -.0415 -.1341    -.0239    
 (.0382) (.0929)     (.0498)     
    
LnC -.0685 .1493   .0154    
 (.1002) (.5572)      (.1387)      
    
AGE -.1004*** -.0928**   -.1280***    
 (.0188) (.0257)     (.0203)     
    
AGE

2 .0010** .0012 .0019***    
 (.0005) (.0007)      (.0006)      
    
Year 1993 .0754 .0663    .0820    
 (.0587) (.0583)      (.0504)      
    
Year 1994 -.0264 -.0452    -.0073    
 (.0519) (.0583)     (.0378)     
    
Year 1995 .0568 .0194    .0375    
 (.0761) (.0596)      (.0760)     
    
Year 1996 .0146 -.0050   -.0108   
 (.0701) (.0585)     (.0546)     
    
Year 1997 .0619 .0729   .0576   
 (.0748) (.0615)      (.0472)      
    
Year 1998 NA NA NA 
 -- -- -- 
    
Constant 169.2733*** 3.082   179.8735 ***    
 (25.4742) (3.9707)      (24.9557) 
    
Adjusted R-Squared 0.2575 0.1473 NA 
Obs. 495 
    

 
Note:  

1. Standard errors clustered by plant in parentheses.  

2. *** indicates significant at the 1% level, ** indicates significant at the 5% level,  
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 Table 7. Estimates of Instrumental Variables in Hazard Model 
 

 Hazard Model 
Independent Variables Hazard Ratio Coefficient 

Municipal and Co-op .0017** -6.3993** 
 (.0045) (2.7032) 
   
PUC Appointed .4215 -.8640 
 (.3859) (.9157) 
   
Repub. Legislature Control 1.6173** .4808** 
 (.9765) (.1422) 
   
LCV Rating .9253 -.0777 
 (.0641) (.0693) 
   
Hydropower 6.2903 0.1839 
 (7.6531) (1.2166) 
   
Industrial Customer Share 2.41e-06*** -12.9354*** 
 (9.33e-06) (3.8700) 
   
Constant  -3.5531*** 
  (.8726) 

   
Obs. 181 

 
  
 
Note:  

1. Standard errors in parentheses.  
2. *** significant at the 1% level, ** significant at the 5% level 
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Table 8.  Estimates of IV/2SLS Model for Cost Analysis 
 

 Ln(cost) 
Independent Variables Coefficient 

itIVD  -.0086** 

 (.0042) 
  
PWR -.1030* 
 (.0621) 
  
VINTAGE -.0848** 
 (.0121) 
  
UNITS -.0912 
 (.0703) 
  
INCENTIVE -.2127** 
 (.0992) 
  
LnC .1325 
 (.5554) 
  
AGE -.1083*** 
 (.0260) 
  
AGE

2 
.0011* 

 (.0007) 
  
Year 1993 .0736 
 (.0578) 
  
Year 1994 -.0818 
 (.0580) 
  
Year 1995 -.0287 
 (.0596) 
  
Year 1996 -.0382 
 (.0588) 
  
Year 1997 .0561 
 (.0611) 
  
Year 1998 NA 
 -- 
  
Constant 3.5053 
 (3.9531) 
Obs. 481 
  

 
Note:  

1. Standard errors in parentheses.  
2. *** significant at the 0.01 level, ** significant at the 0.05 level, * significant at the 0.1 

level. 
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Table 9. Impact of Market Restructuring on Investments on Power Uprates 
 
 Coefficient 

Variable Probability of Power Uprates Magnitude of Power Uprates 

D
Dereg 

.480** 1.094** 
 (.229) (.508) 
   

D
con 

.399 .838** 
 (.318) (.392) 
   

D
act 

.929 1.559 
 (.438) (1.167) 

Obs. 357 

 
Note: 

1. Standard errors in parentheses.  
2. ** indicates significant at the 5% level 

 
Table 10.  Alternative Specification of Regulatory Status 

 

 Coefficient 

Variables CF Ln(Cost) 
V(lawdate) - .028 * .033 
 (.015) (.033) 
   
V(time) -.020** .045** 
 (.008) (.018) 
   

 
Note:  

1. Standard errors clustered by plant in parentheses.  
2. ** indicates significant at the 5% level, * indicates significant at the 10% level.  

 
 

Table 11.  Restructuring Effects at Utility-Level 
 

 Coefficient 

Variables CF Ln(Cost) 
D
con 

- .067 ** -.256** 
 (.023) (.054) 
   
D
act
 -.047 -.175** 

 (.032) (.077) 
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Appendix A Data Sources 

 
Plant-level generation and production cost, plant size, capacity factor, year built, 

and number of units were taken from FERC Form 1. Missing generation data were 
supplemented with EIA Form 906 and 920. Information on nuclear reactor design 
(PWR or BWR) was obtained from EIA web site. Data on incentive programs were 
collected from Appendix I of Marie (1996) and the state incentive regulation dataset 
provided by Resources for the Future. Data on regulatory status were collected from 
Retail Wheeling & Restructuring Report, a state-by-state reporting of regulatory 
commissions, state legislations, and utilities’ activities related to retail competition 
published quarterly by the Edison Electric Institute. These data are cross-checked with 
the LEAP Letter published bimonthly by William A. Spratley & Associates and the 
National Regulatory Research Institute web site. The original report of the Edison 
Electric Institute provided monthly data on the progress of state-level market 
restructuring. To make it compatible with the plant-level panel data, I converted 
monthly data into yearly data by taking the regulatory status in the last month of each 
year as the regulatory status for the state in that year. The share of industrial 
consumption was obtained from the EIA historical dataset for electricity retail revenues 
and sales from 1992 to 1998 by state. Municipal and rural cooperative generation and 
percentage of hydroelectricity were compiled from EIA’s Electric Sales and Revenue 
and Electric Power Annual for their respective years. Data regarding Republican 
control was obtained from Statistical Abstract of the United States. Data for PUC 
appointed or elected and LCV rating were provided by Resources for the Future and 
were composed from the National Association Regulatory Utility Commissioners’ 
Profiles of Regulatory Agencies of the U.S. and Canada Yearbook and the League of 
Conservation Voters’ National Environmental Scorecard.  

 

 
 


