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A great deal of new electricity generating capacity will be needed in California over the next few 
decades.  Given California’s Renewable Portfolio Standard and greenhouse gas reduction goals, 
a significant fraction of this capacity is likely to be renewable; and among renewables, wind 
energy is particularly promising.  Other likely types of capacity additions are natural gas and 
coal.  Unlike these conventional generators, wind farms produce power intermittently and cannot 
be dispatched when needed.  For this reason, the incorporation of energy storage technologies 
into the electric power system may increase the economic attractiveness of large-scale wind 
power.  In addition, energy storage may add value to the system due to its ability to displace 
expensive peaker plant generation.  However, questions remain about the economic feasibility of 
energy storage, as well as its effects on the electric power system in terms of capacity additions 
and the generation mix.  The purpose of this study is twofold: to evaluate the effects of energy 
storage on the future California electric power system, especially its effect on wind capacity and 
generation, and to assess the relative values of different energy storage technologies.  To do this, 
I use a dispatch simulation/optimization model of the California generating sector in 2020.  The 
optimization portion of the model chooses new capacities of wind (at four California sites), 
energy storage, natural gas (simple and combined cycle) and coal (pulverized and gasified) in 
order to meet the shortfall in generating capacity caused by retirements and increasing demand 
over the next decade and a half.  Simultaneously, the dispatch portion of the model, which takes 
into account hourly wind speeds at each of the four sites, chooses new and existing generators in 
order of increasing marginal cost to meet hourly demand over one year.  The storage unit takes in 
energy when the marginal cost of electricity is low, releasing it when the marginal cost is high.  I 
find that if storage were free and perfectly efficient, it could decrease the total cost of the electric 
power system by about 5%.  Though all storage technologies are currently too expensive for this 
purpose, the costs of compressed air storage and advanced batteries may fall far enough for these 
technologies to become competitive in the next few decades.  Energy storage appears to have a 
relatively minor effect on system structure and generation mix, including wind penetration.  If 
our goal is to reduce carbon emissions, other policies, such as carbon taxes, are likely to be more 
effective than the promotion of energy storage. 
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Background 

California’s Electricity Generation 

California currently obtains more than 60% of its electricity from fossil fuels, mostly natural gas.  

The rest of the state’s load is met largely by nuclear and hydro facilities.  About 11% of load is 

met by renewables, especially geothermal, biomass, and wind (CEC 2004).  Over the next few 

decades, many existing California generators are likely to retire.  Based on simple assumptions 

about generator lifetimes (Table 1), about half of current (2004) generating capacity will have 

retired by 2020 (Figures 1 and 2).  New generating capacity built between now and 2020 must 

replace this retiring capacity as well as accommodate an increasing demand for electricity; the 

California Energy Commission (CEC 2005a) projects that demand will grow by about 1.2% per 

year through 2016.  Though actual retirement dates are sure to differ somewhat from the 

projections used in this analysis, it is clear that a great deal of new generating capacity will be 

needed in the next few decades.  

 
Plant Type Lifetime (y) 
Coal 40 
Natural gas 40 
Petroleum products 35 
Nuclear 601 
Hydro and pumped storage 60 
Geothermal 40 
Biomass, landfill gas, digester gas, MSW 40 
Wind 20 
Solar thermal 20 
Table 1.  Generator lifetime assumptions.  Data are from Bosi 
(2000), Shibaki (2003), Danish Wind Energy Association (2003), 
and US DOE (2005). 

 

                                                 
1 Based on an initial 40-year license, plus a 20-year license renewal. 
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Figure 1.  California in-state generating capacity mix in 2004.  From CEC 
2005b.  81% of California’s electricity demand is met with in-state generation; 
the rest is met with imports from the Northwest (mostly hydro) and Southwest 
(mostly coal).   
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Figure 2.  Projected in-state generating capacity mix in 2020.  Based on 2004 
capacity mix, and assuming retirements according to Table 1.  This figure does 
not take into account demand growth between 2004 and 2020, which will 
increase the need for new capacity. 

 
Most of the large hydro sites in California have been exploited, and state law prohibits the 

construction of new nuclear plants until a federal nuclear waste depository has been built (CEC 

2005c).  Therefore, most of the new generating capacity built in the state over the next few 
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decades is likely to be natural gas, coal, and renewable.2 The specific mix will depend on the 

relative capital costs and fuel (natural gas and coal) prices, as well as on state and federal policies 

that encourage or discourage specific types of generation.  For example, if a tax were levied on 

carbon emissions, renewable generators would benefit at the expense of fossil fuels, particularly 

carbon-intensive coal.  Though carbon taxes have yet to be enacted in the United States, two 

recent California policies aim to increase renewable penetration in other ways.  These are 

described in the next section. 

California Renewables and Climate Policy 

In 2002, California enacted a Renewable Portfolio Standard (RPS), which required electricity 

providers to meet 20% of their load with renewable energy (excluding large hydro facilities) by 

2017.  This deadline has since been pushed to 2010.  In addition, Governor Schwarzenegger has 

endorsed an additional goal of 33% renewables by 2020 (Hamrin et al. 2005).  New wind 

turbines are expected to contribute a large fraction of this renewable energy.  A report by the 

Center for Resource Solutions (Hamrin et al. 2005) predicts that wind will provide half of the 

new renewable energy to meet the 33% RPS; the rest will met with geothermal (30% of the 

total), biomass (10%), and solar (10%).   

 
California climate policy will also affect the electricity generation sector.  Executive Order S-3-

05, issued by Governor Schwarzenegger in March 2005, calls for state greenhouse gas (GHG) 

emissions to be reduced to 2000 levels by 2010; to 1990 levels by 2020; and to 80% below 1990 

levels by 2050 (Schwarzenegger 2005).  These long-term goals are quite ambitious3; but this 

                                                 
2 The descriptor “in-state” is used here to include coal plants built in neighboring states that primarily supply 
California demand.  Two existing plants fit this description: Intermountain (in Utah) and Mohave (in Nevada).  
California air quality regulations prevent coal plants from being built within the state’s borders. 
3 To put Schwarzenegger’s goals in context: if the US had ratified the Kyoto Protocol, the country would be required 
to reduce GHG emissions to 7% below 1990 levels by the period 2008-2012.  Kyoto does not currently include 
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type of action, on a much broader scale, will likely be necessary if we are to avoid increasingly 

destructive climate change.  The electric power sector is the second largest contributor to carbon 

dioxide emissions in California, after transportation (CEC 2002).  Greenhouse gas emissions 

from electricity generation will therefore need to be reduced dramatically if California is to reach 

Governor Schwarzenegger’s targets.  A portion of this reduction is likely to be achieved through 

a transition from fossil to renewable generators;4 and the most likely renewable resource to be 

exploited on a large scale is the wind. 

Wind Power in California 

About 2000 MW of installed wind capacity currently supplies about 1.5% of California’s 

electrical energy (CEC 2004).  Nearly 95% of this energy comes from wind farms in three 

locations: Tehachapi and San Gorgonio in Southern California, and Altamont in Northern 

California (Yen-Nakafuji 2005).  Hamrin et al. (2005) identify 11,800 MW of high-speed (Wind 

Class 5 and above) sites, and 19,000 MW of low-speed (Class 3 and 4) sites in the state that have 

yet to be developed.  Lipman, Ramos and Kammen (2005) claim that significant growth in wind 

capacity is likely at four California sites: Tehachapi, San Gorgonio, Altamont, and Solano 

County (Northern California).  They predict that 90% of new development will occur at the 

Southern California sites, and 10% at the Northern California sites. 

 
Wind is likely to play a significant role in the future California electricity sector as a result not 

only of the resource availability, but also of its relatively low costs.  Based on the assumptions 

used in the 2004 Annual Energy Outlook (EIA 2004), the total generation cost of wind (taking 

                                                                                                                                                             
subsequent targets.  Executive Order S-3-05 allows more time to reduce emissions below 1990 levels, but goes 
beyond Kyoto in requiring sharp reductions by mid-century. 
4 Other possibilities include increased nuclear generation, carbon capture and storage technologies, efficiency 
improvements, and demand-side management.  Though these alternate strategies would advance Schwarzenegger’s 
goals, they would not count toward the renewable portfolio standard. 
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into account capital and O&M costs) is between three and four cents per kWh.  This is far less 

costly than solar photovoltaic ($0.15/kWh, according to the same source), and slightly less costly 

than natural gas generation.  However, though the bus-bar cost of wind is low, it imposes 

additional costs on the system due to its intermittency (DeCarolis and Keith, 2006).5  Because 

wind generators cannot be dispatched when needed, a system with high wind penetration 

requires either (1) a significant amount of load-following capacity on the grid; (2) dispatchable 

backup generation; or (3) energy storage.6  Load following generators adjust their output to 

changes in the supply/demand balance on a short timescale; backup generators are coupled to 

wind farms and respond to the wind’s intermittency by increasing their own generation when the 

wind is low; and energy storage systems take in electricity when the electricity price is low (such 

as when the wind speed is high), and return it to the grid when the electricity price is high (such 

as when the wind speed is low). 

 
Energy storage has some potential advantages over additional load-following or backup 

generation.  For instance, a large-scale wind system with no storage could result in the waste of 

excess wind power that was generated when demand was low.7  In addition, load-following and 

backup generators often burn fossil fuels (and thus emit GHGs), while most storage technologies 

do not.8  In addition, aside from their role managing intermittency, energy storage systems may 

prove profitable through their ability to arbitrage (buy power when its price is low, and sell it 

when its price is high).  However, energy storage has rarely been used on a large scale, and its 

costs are relatively high.  The next section provides a brief overview of energy storage 

                                                 
5 The same applies to solar power, of course. 
6 Another possibility,mentioned by DeCarolis and Keith (2006), is increasing the price elasticity of electricity 
demand.  To be useful in this context, demand would need to be responsive to price on a very short timescale. 
7 This would only be a problem if wind capacity were large enough that wind was often the marginal generator. 
8 The exception is compressed air energy storage, which requires some natural gas.  However, this technology still 
uses stored energy to replace fuel.  
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technologies.  The following section discusses the potential economic effects of energy storage 

on an electric power system. 

Energy Storage Technologies 

Electricity can be stored as electricity, but it is generally converted into potential, kinetic, or 

chemical energy in order to be stored.  Table 2 lists energy storage technologies of each of these 

types. 

Form of Energy Storage Technologies 
Compressed air energy storage (CAES) Potential 
Pumped hydro 

Kinetic Flywheels 
Batteries (lead acid, advanced, flow) Chemical 
Fuel cells 
Supercapacitors Electrical 
Superconducting magnetic energy storage (SMES) 

                          Table 2.  Categorization of energy storage technologies by form of energy stored. 
 
All energy storage systems have three components: a charge component (which converts 

incoming electricity into the form in which it will be stored), a storage component, and a 

discharge component (which converts the stored energy back into electricity).  Energy storage 

technologies are often characterized by their discharge capacities and the time they can discharge 

at maximum power, which is the ratio of the size of the storage tank (in MWh) to the discharge 

capacity (in MW).  These characteristics determine whether a storage technology is appropriate 

for a particular application.  For example, storage systems that are used for power quality 

purposes (to deal with short-term fluctuations in voltage, frequency, and harmonics) have large 

power/energy ratios, and are discharged for, at most, a few seconds at a time.  On the other hand, 

storage systems that are used in conjunction with wind energy systems must have long enough 

discharge times to be able to fill in for hours at a time when the wind is low.  Of the technologies 

listed in Table 2, supercapacitors and SMES have insufficiently long discharge times to be useful 

for managing wind’s intermittency.  According to Schoenung 2003, the most promising 
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technologies for large-scale (“bulk”) energy storage are batteries of various types, CAES, and 

pumped hydro.   

Energy Storage and Electric Power Systems 

There are two reasons that energy storage might be a valuable addition to an electric power 

system.  First, as mentioned above, the existence of storage on the grid might improve the 

economics of wind power, since storage can mitigate wind’s intermittency and reduce the need 

for additional load-following capacity.  Second, and independent of its effects on wind 

generation, storage may reduce the total cost of the system by reducing the need for generation 

from expensive peaker plants.  That is, when demand is low, the storage system can buy power 

that is generated by relatively inexpensive plants; and when demand is high, the storage system 

can sell that power back to the grid, replacing peaker generation.  The storage unit can thus 

essentially serve to substitute generation from baseload or intermediate plants for generation 

from peaker plants.  This benefit of energy storage may accrue either to the owner of the storage 

unit, if he/she profits through arbitrage, or to consumers, if the reduced system cost is passed 

through in the form of reduced electricity rates.   

 
There are two possible configurations of an electric power system that includes wind power and 

energy storage: (1) standalone storage, in which the storage unit is attached to the grid and 

arbitrages between high and low prices; and (2) coupled wind/storage system, in which the 

storage unit is coupled to a wind farm and buys power only from that source.  The second type of 

system may be useful in a market structure in which a wind generator faces penalties for not 

providing a contracted amount of power each hour (a “firm capacity” contract; see Lamont 

2004).  However, not all wind generators face such a contract.  In particular, the California 

Independent System Operator has implemented a Participating Intermittent Resource Program 
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(PIRP), which eliminates such penalties for wind generators (CAISO 2005).  Under these 

circumstances, a standalone storage system is likely to be more profitable than a storage system 

coupled to a wind farm, because the standalone system has greatly expanded opportunities to buy 

power.  In this study, I model standalone storage in order to assess the maximum value that 

storage can provide to the electric power system. 

 
To maximize its value, a standalone storage unit should buy power from the grid when the 

systemwide electricity price is low, and sell it back to the grid when the systemwide price is 

high.  In practical terms, this involves setting price “thresholds”: when the electricity price is 

below the lower threshold, the storage unit buys power; and when the price is above the upper 

threshold, the storage unit sells power. 

 
Purpose of this Study 

A great deal of new electricity generating capacity will need to be built in California during the 

next few decades.  California renewable and climate policies ensure that a significant fraction of 

this new capacity will be renewable.  Wind looks particularly promising, due to its relatively low 

costs and the considerable wind resource in California.  However, as a result of the intermittency 

of the wind, the feasibility of large-scale wind generation may be increased by the addition of 

energy storage to the system.  Energy storage may also allow for a more economical 

configuration of the balance of the system, and it may decrease the total cost of the generation 

due to its arbitrage capability. 

 
The general purpose of this study is to analyze the effects of energy storage on California’s 

electricity sector.  Specifically, I investigate the effects of a variety of storage capacities and 

characteristics on (1) the optimal capacities of new generators (natural gas, coal, and wind) 
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added to the system; (2) generator dispatch, including wind penetration and carbon emissions; 

and (3) total system cost.  The effect of storage on the total system cost is a measure of the value 

that storage provides to the system.  Comparing this value with the costs of particular storage 

technologies allows me to assess whether storage technologies are economic at current prices, 

and which technologies are the most promising.  In addition, determining the impacts of storage 

on wind penetration and carbon emissions allows me to assess whether storage could be an 

effective and economic means of reaching greenhouse gas reduction goals. 

  
Methods 

To address the questions discussed above, I built a simulation/optimization model of the 2020 

California electricity generating sector.  This year was chosen because of its relevance to the 

California RPS and Executive Order S-3-05.  I assume that current generators remain in the 

system until they retire, based on the simple assumptions about generator lifetimes presented 

above (see Table 1).  See Figure 2 for an illustration of generating capacity that is projected to 

remain online in 2020.  In order to ensure that projected 2020 electricity demand is met, 

additional generating capacity is added to the system based on the optimization process 

described below. 

 
The optimization portion of the model minimizes annual system cost, which includes levelized 

capital costs and annual operating costs of new and existing generators and energy storage.  In 

each run of the model, the energy storage capacity is fixed.  The optimization involves ten 

decision variables: capacities of eight new generators types (two types of natural gas, two types 

of coal, and wind at four locations), and the two marginal cost thresholds that determine when 

the storage unit charges and discharges (see Table 3). 
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Decision Variables in Optimization 
Simple-cycle natural gas 
Combined-cycle natural gas 
Pulverized coal 
IGCC coal 
Wind at San Gorgonio site 
Wind at Altamont site 
Wind at Solano site 

Generator capacities 

Wind at Tehachapi site 
Lower threshold (storage charges) Marginal cost thresholds for 

storage Upper thresholds (storage discharges) 
Table 3.  Optimization model decision variables.  The capacity of the storage 
unit was not treated as a decision variable, but was varied between model runs. 

 
A constraint is included to ensure that total generation (including storage output) meets or 

exceeds demand in nearly every hour of the year.9  The energy storage component can be used to 

model different storage technologies by changing its charge/discharge ratio, discharge time, 

component costs, efficiencies, and GHG emissions.  I model storage as perfectly efficient in 

order to be as favorable to storage as possible in the preliminary analysis.10 To evaluate the 

economic efficiency of storage, I compare the value storage provided to the system with the costs 

of the various storage technologies. 

 
Within this optimization, the model simulates generator dispatch for each hour of a year.  

Existing and new generators are chosen in order of increasing marginal cost in order to meet a 

varying hourly demand.  Demand is assumed to be perfectly inelastic (unresponsive to electricity 

price), which is a reasonable assumption given today’s retail electricity market.11  Energy storage 

is modeled in three parts: a charge component, discharge component, and storage component.  

During hours when the marginal cost of electricity (the cost of the most expensive generator 

                                                 
9 For computational tractability, I did not include a separate constraint for each hour, but rather a single constraint 
requiring that the difference between demand and generation (including output from energy storage) be positive for 
no more than 10 hours per year.  I allow demand to exceed generation for up to 10 hours because it would be 
unrealistic to require the model to build capacity that is essentially never used.   
10 The storage technologies I consider actually have efficiencies of about 70-75% (see Table 6). 
11 Today, consumers are charged fixed or block rates that do not reflect short-term variations in the marginal cost of 
electricity production.  In order for demand to be responsive to price on an hourly basis, not only would consumers 
need to be charged real-time prices, but they would need to be aware of what these prices were. 
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operating) is below the lower threshold, the storage device is charged; and when the marginal 

cost of electricity is above the upper threshold, the storage device is discharged.  Of course, the 

ability of the storage unit to charge or discharge at any particular time depends on the quantity of 

energy in storage at that time.  Storage output effectively displaces the most expensive generator 

that would otherwise be operating at the time.  As discussed above, the storage unit is not 

coupled to the wind generators, but is available for use by the system as a whole.  Further 

description and a mathematical representation of the model are presented in the Appendix. 

 
Comparison to Previous Studies 

A recent study by Lipman, Ramos, and Kammen (2005) examines the costs of battery and 

hydrogen storage systems in conjunction with wind generation in California.  They consider the 

same wind sites that I do (in fact, I borrow their wind speed data).  However, their study differs 

from mine in that they model storage that is coupled to wind farms (takes in only wind-generated 

electricity), while I model standalone storage systems.  They also assume that stored electricity is 

sold to the grid under a fixed-price contract, at $0.065/kWh,12 whereas I assume that the storage 

unit buys and sells power at the market price each hour.  In addition, whereas my model 

optimizes the capacities of new wind generators, Lipman et al. analyze fixed wind capacities 

(scenarios in which wind meets 10% and 20% of California demand).  Lipman et al. find that 

that storage is useful in conjunction with wind power only when wind penetration exceeds about 

10%.  At 20% wind penetration, hydrogen storage is more promising than advanced battery 

storage.   

                                                 
12 This assumption is based on new rules that have been proposed for valuing renewable generators in California, 
which involve compensating these generators at the utilities’ avoided cost of generation, with preference given to 
dispatchable renewables.  Under this proposal, storage coupled to a wind farm would increase the value of wind 
generation by increasing its dispatchability and thus its “rank” relative to other intermittent renewables (including 
other wind generators).  The $0.065/kWh value includes an assumed production tax credit of $0.015/kWh. 
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Another recent study (DeCarolis and Keith, 2006) considers the potential long-term role of wind 

and storage in the Midwest.  DeCarolis and Keith optimize the capacities of new wind farms (at 

five Midwestern sites), transmission lines, compressed air energy storage, and natural gas 

generators (simple and combined cycle) to meet future demand at a simulated Chicago demand 

center.  The basic structure of their model is thus very similar to mine; like mine, it includes an 

hourly dispatch component as well as an optimization component.  They also model storage as a 

standalone system, rather than coupled to wind generation.  The most significant difference 

between their study and mine is that they analyze the long-term rather than the medium-term, 

and so do not take into account existing generation capacity.  DeCarolis and Keith find that using 

wind to supply about half of demand would increase the cost of electricity by about 1-2 cents per 

kWh.  They also find that even under a carbon tax, compressed air energy storage is unable to 

compete effectively with natural gas generation because of its higher costs and residual carbon 

emissions. 

 
Two studies have analyzed the value of technology-neutral storage in electric power systems, 

taking hourly electricity prices as given and optimizing the price thresholds at which a storage 

unit charges and discharges.  In “Opportunities for Electricity Storage in Deregulated Markets,” 

Graves et al. (1999) optimize these thresholds for each of 26 periods in a year, assuming 1 MW 

of storage charge and discharge capacities, 20 MWh of storage tank capacity, and 75% round-

trip efficiency.  Using price patterns for a number of US and international electricity markets, 

they find storage values ranging from less than $5 to more than $100 per kW-y, with most 

regions having values between $20 and $40/kW-y.  In “Improving the Value of Wind Energy 

Generation Through Back-up Generation and Energy Storage,” Lamont (2004) carries out a 
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similar analysis to Graves et al. as a part of his study of the effects of storage and back-up 

generation on the value of wind power.  With slightly different assumptions than Graves et al., 

Lamont’s finds the maximum value of storage to be about $30/kW-y (which occurs with an 

optimal storage tank to discharge capacity ratio of 6:1).    

 
The storage component of my model is similar to the models used by Graves et al. and Lamont.  

The major difference between my model and these two is that theirs evaluate storage capacities 

that are small relative to the size of the electricity market, whereas I consider much larger storage 

capacities.  Therefore, whereas their models take hourly electricity prices as given, mine 

calculates electricity prices based on generator dispatch and storage behavior.  In addition, 

Graves et al. and Lamont do not investigate the effects of storage on optimal generator 

capacities.   

 
Data 

Hourly wind speed data from four California sites (Tehachapi, San Gorgonio, Altamont, and 

Solano) were obtained from the authors of Lipman et al. (2005), who had originally obtained 

them from Lawrence Berkeley National Laboratory and the California Wind Energy 

Collaborative (see their paper for details).  I found data on the available wind resource in the 

state in Yen-Nakafuji (2005).  Wind turbine power curve data were obtained from the brochure 

for the Vestas V80 1.8 MW turbine, which was designed for the North American market (Vestas 

Wind Systems 2003).  For existing wind turbines, I used power curve data for the NEG Micon 

NM54/950, a 950 kW turbine (Nazaroff 2005). 

 
I obtained 2004 California hourly load data from the California Independent System Operator 

(CAISO 2005b).  According to this source, peak California load in 2004 was 45.6 GW, and total 
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annual generation was 239 million MWh.  I scaled these data to match the California Energy 

Commission’s data on 2004 gross system in-state electricity production, which gives the total 

annual generation as 223 million MWh (CEC 2006, CEC 2004).  There are three reasons for the 

discrepancy between the ISO data and the CEC data: (1) Some portion of the demand reported 

by the ISO is met by out-of-state generation; (2) the ISO service area does not include the whole 

state; and (3) there are energy losses in the transmission and distribution systems.  I then scaled 

these data up based on California Energy Commission (CEC 2005a) projections of future state 

electricity demand increases (1.2% per year), for a total generation requirement of 270 million 

MWh in 2020.   

 
The CEC also provides a database of existing California generators, their capacities, and the 

dates they began operating (CEC 2005b).  For baseload generators, I approximated the annual 

availability factor as an hourly constraint (see the Appendix); availability factor data were 

obtained from the North American Electric Reliability Council (NERC 2005).  I obtained power 

plant cost data from two sources: for existing plants, I used the Electric Power Research 

Institute’s Technology Assessment Guide (EPRI 1989), and for new plants I used the Energy 

Information Administration’s Assumptions for the Annual Energy Outlook (EIA 2004).  Storage 

characteristics and cost data were obtained primarily from a Sandia National Laboratory report 

(Schoenung and Hassenzahl 2003).  Fuel price projections (natural gas, coal, petroleum, and 

biomass) were obtained from the Energy Information Administration (EIA 2005, EIA 2006) and 

the California Biomass Collaborative (2005).  All costs were converted to 2005 dollars. 

 
Table 4 presents cost data used for the new capacity considered by the optimization model, and 

Table 5 presents fuel cost assumptions.  Storage costs are presented in Table 6.  In the analysis 
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below, I consider five storage technologies: compressed air, pumped hydro, lead-acid batteries, 

sodium sulfur batteries, and polysulfide bromide flow batteries.  These technologies were chosen 

because Schoenung (2003) identifies them as being appropriate for large-scale energy storage.  

Schoenung also includes nickel cadmium batteries on this list, but I neglected these because they 

have much higher costs than the other technologies.   

 
New Generator Costs and Efficiencies (2005 $) 

Generator Type Capital 
($/kW) 

Fixed O&M 
($/kW-y) 

Variable O&M 
($/kWh) 

Efficiency 
(%) 

Wind $1117 $29 $0 N/A13 
Natural gas (simple 
cycle) 

$513 $9 $0.0034 40% 

Natural gas 
(combined cycle) 

$677 $11 $0.0023 54% 

Pulverized coal $1285 $27 $0.0034 40% 
IGCC with C seq. $2297 $45 $0.0028 43% 
Table 4.  New generator costs and efficiencies, based on assumptions used in the 2004 Annual 
Energy Outlook (EIA 2004).  Variable O&M figures do not include fuel costs. 
 

 
2020 Fuel Cost Assumptions (2005 $/million Btu) 

Coal  $1.32 
Natural gas  $5.52 
Petroleum products  $9.98 
Nuclear $0.62 
Biomass  $1.45 
Table 5.  Fuel cost assumptions.  Data sources: EIA 2005, EIA 
2006, and CA Biomass Collaborative 2005.  
 

 
Storage 
Technology 

Capital 
storage cost 
($/kWh) 

Capital 
Power cost 
($/kW) 

Balance of 
Plant cost 
($/kWh) 

O&M 
($/kW-
y) 

Efficiency Lifetime 
(y) 

Natural gas 
input 
(Btu/kWh) 

Compressed 
Air 

$3 $463 $55 $2.70 0.73 20 4000 

Pumped Hydro $11 $1090 $4 $2.70 0.75 20 - 
Lead-Acid 
Battery 

$164 $136 $164 $16 0.75 6 - 

Sodium Sulfur 
Battery 

$273 $164 $55 $22 0.7 10 - 

Flow Battery $109 $300 $55 $16 0.65 10 - 
Table 6.  Energy storage technology costs.  Data are from Schoenung 2003.  Variable O&M costs are small for these 
technologies, and are included in the fixed O&M values where appropriate.  All costs are given in 2005$, based on 
the assumption that costs provided in Schoenung 2003 were in 2002$. 

                                                 
13 Efficiency is used to calculate fuel costs, and so is not relevant for wind turbines.  Wind turbine efficiency is 
implicit in the power curve data (which relate turbine output to wind speed). 
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Results: No Storage Case 

The optimal capacities of new natural gas, coal, and wind generators to meet California 

electricity demand in 2020, in the absence of energy storage, are presented in Table 7.  The 

resulting generation mix is presented in Figure 3. 

Generator Fuel Generator Type/Location New Capacity (MW) 
Simple Cycle 0 Natural gas Combined Cycle 576 
Pulverized 19,995 Coal Gasified with C sequestration 0 
San Gorgonio 5,131 
Altamont 0 
Solano 540 
Tehachapi 1,772 

Wind 

Total Wind 7,443 
Table 7.  Optimal capacities of new California generators in 2020 in no- 
storage scenario. 

 

Figure 3. California generation mix in 2020, based on optimal capacities of 
new generators (see Table 7) and existing generators that have not retired by 
2020. 
 

The most noteworthy aspects of these results are the prevalence of pulverized coal, especially in 

comparison to natural gas, and the increased wind penetration compared to 2004.  Coal 

penetration is so high because the low price of coal fuel and relatively high natural gas price (see 

Table 5).  In fact, in this scenario, even existing natural gas capacity that has not retired by 2020 
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goes largely unused due to its high fuel cost: capacity factors are just 2% for existing simple-

cycle natural gas and 13% for existing combined-cycle gas.  Finally, it is interesting to note that 

wind penetration increases from 1.5% in 2004 to 11% in 2020, in the absence of storage or any 

policy to promote renewables.  At the Solano wind site, the maximum wind resource is exploited 

in this scenario, indicating that but for this constraint the optimal wind penetration would be even 

higher.14  No new wind capacity is installed at the Altamont site, probably because Altamont has 

the lowest average wind speed of the four sites. 

No Storage with Carbon Tax 

Carbon taxes of $20, $50, $100, and $200 per metric ton were imposed on the system to evaluate 

their effects on the optimal capacity mix, generation mix, and system cost.  Resulting capacity 

and generation mixes are shown in Table 8 and Figure 4.  At a carbon tax of $20/t, the generation 

mix includes slightly less coal and more wind than in the baseline (no tax) case.  The changes are 

much more significant when the tax reaches $50.  While pulverized coal is the major energy 

source in the baseline and $20 tax scenarios, in the $50, $100, and $200 tax cases, the major 

energy source is IGCC with carbon sequestration.  IGCC plants with carbon sequestration are 

significantly more expensive than pulverized coal plants (see Table 4), which is why they do not 

appear in the $0 or $20 carbon tax scenarios.  However, this technology becomes attractive in 

scenarios with high carbon taxes, as its additional capital cost is outweighed by the tax on 

emissions from pulverized coal plants.  For this reason, IGCC replaces pulverized coal to an 

increasing extent as the carbon tax increases, until at a $200 carbon tax the IGCC penetration is 

more than 50% and the pulverized coal penetration less than 1%. 

 

                                                 
14 Running the model with no storage and unconstrained wind capacities increases wind penetration from 11% to 
13%, while the wind capacity at the Solano site more than quadruples (from 540 to 2213 MW). 
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The other major change that occurs as the carbon tax increases is an increase in wind 

penetration.15  With carbon taxes of $50/t and above, new wind capacities are essentially at the 

maximum allowed in the model.16  This constraint was set at nearly 12 GW, the estimated 

available high-speed wind resource in the state (Hamrin et al. 2005), for the four wind sites 

combined.  To investigate the effect of this constraint on wind capacity, I ran the model with a 

$50 carbon tax and unconstrained wind capacity.  The result is nearly a tripling of new wind 

capacity from the constrained case, from 11.9 GW to 31.4 GW.17  Wind penetration increases by 

roughly the same factor, from 18% to 45% of total annual generation.  This increase in wind 

generation is matched by a decrease in IGCC generation.  A comparison of the generation mix 

with and without the constraint on wind capacity is shown in Figure 5. 

  New Capacity (MW) 

Generator 
Fuel 

Generator 
Type/Location 

$0 
C tax 

$20 
C tax 

$50 
C tax 

$100 
C tax 

$200 
C tax 

Simple Cycle 0 0 0 0 0 Natural gas Combined Cycle 576 1,785 3,252 2,426 1,979 
Pulverized 19995 17505 1488 0 0 

Coal Gasified with C 
capture 

0 0 14,463 17,294 19,358 

San Gorgonio 5,131 5,400 5,400 5,400 5,400 
Altamont 0 0 540 490 540 
Solano 540 540 540 540 540 
Tehachapi 1,772 5,400 5,400 5,400 5,400 

Wind 

Total Wind 7,443 11,340 11,880 11,830 11,880 
Table 8.  Optimal capacities of new California generators in 2020 in no-storage scenario with 
various carbon taxes.  New wind capacity is constrained to be no more than 5400 MW at the 
San Gorgonio and Tehachapi sites, and 540 MW at the Altamont and Solano sites. 
 

                                                 
15 My model does not allow the addition of new nuclear capacity, since new nuclear plants are unlikely to be built in 
California in the short- to medium-term due to negative public opinion and the problem of nuclear waste.  However, 
since nuclear generation does not involve carbon emissions, it would be interesting to examine how nuclear would 
compete with wind under a carbon tax. 
16 The exception is Altamont at the $100 carbon tax.  I am not sure why the optimal wind capacity drops slightly 
below the 540 MW constraint in this case. 
17 Wind capacity at two sites (San Gorgonio and Altamont) actually decreases when wind capacity is unconstrained, 
but this is more than compensated for by increased capacity at the other two sites.  It is interesting to note that the 
optimal unconstrained wind capacity, with a $50/t carbon tax, is very close to the total available wind resource in the 
state, including both high- and low-speed sites (estimated by Hamrin et al. to be about 31 MW).  This 
correspondence is purely coincidental. 
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Figure 4.  2020 generation mix with no storage and various carbon taxes. 
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Figure 5.  2020 generation mix with no storage and $50/t carbon tax.  In all model runs 
but the one presented on the right of this figure, new wind capacity was constrained by 
high-speed wind resource availability in the state, much of which exists at the four wind 
sites considered in the model.  This constraint limits new wind capacity to about 12 GW, 
and limits wind penetration to 18%.  When the constraint was ignored, new wind capacity 
increased to 31 GW and wind penetration increased to 45%. 

 
As expected, systemwide carbon emissions decrease as the carbon tax increases.  Table 9 shows 

annual carbon emissions and total annual system cost.  The $50, $100, and $200 taxes result in 
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much sharper emission reductions than the $20 tax, due to the switch from pulverized coal to 

IGCC.  Of the taxes investigated, the $50 tax results in the lowest cost of avoided emissions: 

about $34/tC. 

Carbon 
Tax ($/t) 

Carbon Emissions18  
(MT/y) 

Total Annual Cost (billions 
of dollars, including tax) 

$0 36.4 $8.9 
$20 32.2 $9.5 
$50 4.8 $9.9 
$100 2.8 $10.2 
$200 1.7 $10.5 

Table 9.  Carbon emissions and total system cost under various carbon 
taxes. 

  
Results With Energy Storage  

As discussed above, there are two reasons that we might value the addition of storage to an 

electric power system.  First, storage might decrease the total cost of the system, thus benefiting 

either the storage owner or electricity consumers.  Second, storage might increase the penetration 

of renewables and/or decrease carbon emissions.  These two potential effects are considered 

separately below. 

The Effect of Storage on Total System Cost 

Figure 6 displays the total annual cost of the system (operating costs and annualized capital costs 

of new and existing generators and storage) with no carbon tax and varying energy storage 

capacities.  Storage is modeled to be free and perfectly efficient19, and the ratio of storage tank 

capacity (in MWh) to storage charge/discharge capacity (in MW) is varied among 10, 30, and 50 

hours.  The leftmost point is the no-storage case, discussed above.  As the storage capacity 

increases to about 6000 or 7000 MW, the system cost decreases by about 5%.  This is because 

the storage system is reducing the need for generation from expensive peaker plants by 
                                                 
18 2004 California electric power sector carbon emissions were about 26 MT. 
19 Storage as modeled as free in order to determine the maximum value that storage can provide to the system.  This 
value is then compared to the costs of different storage technologies (see below).  The question of efficiency is 
discussed in the Methods section. 
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discharging during high-demand periods.20  However, beyond about 7000 MW, additional 

storage capacity has very little effect on the total system cost.  The greater the storage tank 

capacity (the larger the number of hours at which the storage unit can discharge at maximum 

capacity), the greater its effect on total system cost, since it is able to displace expensive 

generators during a greater number of hours.   
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Figure 6.  Total annual system cost, including levelized capital costs and annual operating costs of all 
generators and storage.  Storage is modeled as free and perfectly efficient. 

 
The annual value of storage is the decrease in total system cost associated with a particular 

storage capacity (Figure 7).  

                                                 
20 Storage can also change the total system cost by changing the optimal capacities of new generators.  However, as 
will be seen below, this is not a major factor in the cost decrease observed here. 
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Annual Value of Storage
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Figure 7.  Value of storage.  The value of particular storage capacity is the difference between the 
total system cost with no storage and the total system cost with that storage capacity. 

  
The value of storage presented here can be compared to the storage values calculated by Lamont 

(2004) and Graves et al. (1999).  Since those studies considered small storage capacities, it is 

most reasonable to compare their values of storage with the value I determined for 1000 MW of 

storage (the smallest storage capacity I consider).  From Figure 7, the value of 1000 MW of 

storage is about $100 million per year, which is equivalent to $100/kW-y.  This is higher than the 

storage value presented by Lamont, but is within the range of values presented by Graves et al.  

 
As Figures 6 and 7 indicate, storage would be a valuable addition to the system if it were free 

and perfectly efficient.  In order to determine whether actual storage technologies are 

economical, we must compare the value that storage provides to the system (Figure 7) with the 

costs of actual storage technologies.  These data are presented in Figures 8, 9, and 10 for the 

three storage tank capacities (10, 30, and 50 hours) and five storage technologies: compressed air 

energy storage (CAES), pumped hydro storage, lead-acid batteries, sodium sulfur batteries, and 
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flow batteries.  The “Value of Storage” curves at the bottom of Figures 8-10 are the same curves 

that are depicted in Figure 7.   

Cost and Value of Storage: 10 Hour Storage Capacity

$-

$100

$200

$300

$400

$500

$600

$700

$800

$900

$1,000

0 2000 4000 6000 8000 10000

Storage Discharge Capacity (MW)

M
ill

io
ns

 o
f D

ol
la

rs Sodium Sulfur
Lead-Acid
Polysulfide Bromide
CAES
Pumped Hydro
Value of Storage

 
Figure 8.  Annual value of technology-neutral storage, with 10 hours of discharge capacity, compared to 
current costs of actual storage technologies.  The CAES cost curve is not straight because it has a 
significant per-kWh operating cost (it requires natural gas fuel).  While the other technologies’ costs are 
almost completely dependent on installed capacity, the CAES cost depends on both installed capacity and 
the amount of energy that passes through storage.  This energy pass-through is determined endogenously 
by the model. 
 

Cost and Value of Storage: 30 Hour Storage Capacity
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Figure 9.  Annual value of technology-neutral storage, with 30 hours of discharge capacity, compared 
to current costs of actual storage technologies. 
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Cost and Value of Storage: 50 Hour Storage Capacity

$-

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

$700.00

$800.00

$900.00

$1,000.00

0 2000 4000 6000 8000 10000

Storage Discharge Capacity (MW)

M
ill

io
ns

 o
f D

ol
la

rs

Sodium Sulfur
Lead-Acid
Polysulfide Bromide
CAES
Pumped Hydro
Value of Storage

 
Figure 10.  Annual value of technology-neutral storage, with 50 hours of discharge capacity, compared 
to current costs of actual storage technologies. 

 
Comparing Figures 8, 9, and 10 reveals that as the storage tank capacity increases from 10 to 30 

to 50 hours, the costs of storage technologies increase more rapidly than does the value of 

storage.  For all technologies considered, storage cost is closest to storage value when the storage 

capacity is smallest (10 hours of tank capacity, and 1000 MW of discharge capacity, as shown on 

the left of Figure 8).  Even in this case, all the batteries considered cost more than the value they 

provide to the system.  Unless their costs decrease substantially (discussed further below), 

batteries are therefore not an effective means of decreasing the total cost of the system.  Pumped 

hydro and compressed air storage, meanwhile, are already very close to being competitive at this 

smallest storage capacity.  However, one important aspect of the storage technologies is not 

captured by this comparison: their imperfect efficiencies.  Pumped hydro and compressed air 

storage both have round-trip efficiencies of about 0.75 (see Table 6), and therefore would not 

provide as much value to the system as Figures 6-10 indicate.  Further model runs are necessary 

to determine the value of imperfectly efficient storage.  However, since pumped air and 
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compressed hydro storage are just on the edge of being competitive when perfect efficiency is 

assumed, these technologies will almost certainly be uncompetitive, at current costs, when their 

actual efficiencies are taken into account. 

Storage Cost Decreases: Learning Curve Analysis 

As discussed above, energy storage technologies are too expensive, at today’s prices, to be 

competitive in the 2020 California electric power system (that is, to reduce the total cost of the 

system).  However, as experience is gained with these storage technologies, their costs are likely 

to decrease.  For many technologies in the electric power sector, costs have been observed to 

decline about 20% for each doubling of installed capacity (Kammen 2003).  For the energy 

storage technologies considered here, insufficient data exist to predict future cost declines based 

on past experience.  However, if we assume that these technologies will follow a 20% learning 

curve, we can project their costs in 2020 under the various storage capacity assumptions 

discussed above.  The cost decreases projected by a 20% learning curve depend, essentially, on 

the quantity of previously installed capacity of each technology.  For instance, pumped hydro is 

the most prevalent storage technology, with 90 GW of capacity currently installed worldwide.  

An addition of 1-10 GW of additional pumped hydro capacity will be a small change, 

percentage-wise, so the cost projected cost decreases from adding this capacity will be relatively 

small.  On the other hand, only about 25 MW of large sodium sulfur storage facilities exist 

worldwide.  An addition of 1-10 GW of capacity will amount to many doublings of current 

capacity, so cost will be expected to decrease sharply.   

 
Estimates of the existing worldwide capacity of each storage technology are presented in Table 

10.  Figures 11-13 show the same cost-benefit comparison as Figures 8-10, but with the 

assumption of storage cost decreases according to a 20% learning curve.  Only storage installed 
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in California according to model assumptions is taken into account in calculating learning curve-

related cost decreases; storage that may be installed elsewhere is ignored. Cost curves in these 

figures are not linear because the greater the new storage capacity, the greater the learning curve 

effect and so the greater the change between current storage costs and projected storage costs.  

The pumped hydro curves are nearly linear because the large amount of existing pumped hydro 

capacity makes the learning curve effect negligible. 

 
Technology Approximate Installed 

Capacity (MW) 
Compressed Air                  400 
Pumped Hydro             90,000 
Lead-Acid Batteries 55 
Sodium Sulfur Batteries 25 
Polysulfide Bromide Flow Batteries 30 

 Table 10.  Installed capacities of energy storage technologies.  Data from Electricity Storage 
Association (2003).  Note that the capacity given for lead-acid batteries includes only large 
battery installations for energy storage, not small batteries.  Inclusion of all lead-acid batteries 
would increase this capacity dramatically, and result in much slower cost decreases according 
to the learning curve analysis. 
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Figure 11.  Annual value of technology-neutral storage, with 10 hours of discharge capacity, compared to 
future costs of actual storage technologies assuming cost decreases according to a 20% learning curve. 
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Cost and Value of Storage: 30 Hour Storage Capacity, 
20% Learning Curve
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Figure 12.  Annual value of technology-neutral storage, with 30 hours of discharge capacity, compared to 
future costs of actual storage technologies assuming cost decreases according to a 20% learning curve. 
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Figure 13.  Annual value of technology-neutral storage, with 50 hours of discharge capacity, compared to 
future costs of actual storage technologies assuming cost decreases according to a 20% learning curve. 

 
As expected, storage costs are much closer to storage benefits when these cost decreases are 

taken into account.  However, even under the 20% learning curve assumption, none of the 

storage technologies considered appear to be competitive at 30 or 50 hours of storage tank 
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capacity.  At 10 hours of storage tank capacity, polysulfide bromide batteries, compressed air, 

and sodium sulfur batteries all appear likely to be economically feasible (Figure 11).21  

The Effect of Storage on Wind Penetration and Carbon Emissions 

Even if energy storage does not decrease the total cost of the system, we may be willing to pay 

for it if we value its systemwide effects.  In particular, storage may be an effective means of 

increasing renewable penetration and/or decreasing carbon emissions.   

 
In this analysis, storage can change the generation mix in two ways.  First, because the capacities 

of new generators are re-optimized with each storage capacity, storage can affect the generator 

capacities available to be dispatched.  Second, storage changes the generation mix by displacing 

generators that are marginal when the storage unit discharges, and increasing the generation of 

generators that are marginal when the storage unit charges.  The first effect turns out to be 

relatively minor.  As storage is added to the system, the capacity of new pulverized coal changes 

by up to 7% from the baseline no-storage case (from 20.0 to 18.7 GW), and the largest change in 

new wind capacity is an increase of 8% (from 7.4 to 8.0 GW).  These maximum changes occur at 

capacities of 6000-8000 MW of storage, and seem relatively insensitive to the storage tank 

capacity.  It is perhaps surprising that storage does not have a greater effect on new wind 

capacity, since one of the supposed benefits of storage is its ability to mitigate the intermittency 

of the wind and thus increase wind’s competitiveness relative to other types of generators.  As it 

turns out, wind capacity seems to be limited more by its capital costs than by its intermittency.  

Though the cost of building a new wind generator is less, per MW of capacity, than the cost of 

building a new coal generator, wind has a much lower capacity factor than coal. Storage can, in 

                                                 
21 Again, this analysis assumes perfect efficiency.  However, the projected relative costs of these technologies would 
not change much if their imperfect efficiencies were taken into account, since all have fairly similar efficiencies.  
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effect, shift the timing of wind generation (smoothing its intermittency), but it cannot cause the 

wind to blow more hours of the day (increasing its capacity factor). 

 
Figures 14-16 present the change in generation mix associated with various storage capacities.  

In each of these figures, the bar on the far left represents the no-storage case, which was also 

depicted in Figure 3.  The other bars show how the generation mix changes as increasing storage 

capacities are added to the system. 
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Figure 14.  Generation mix with 10 hours of storage and varying storage discharge capacities. 
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Generation Mix, 30 Hours of Storage
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Figure 15.  Generation mix with 30 hours of storage and varying storage discharge capacities. 
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Figure 16.  Generation mix with 50 hours of storage and varying storage discharge capacities. 

 
The most noticeable result from Figures 14-16 is that the generation mix changes very little as 

storage is added to the system.  This indicates that the impact of storage on generator dispatch, 

like its effect on optimal generator capacities, is fairly minor.  As it turns out, hydro is often the 
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marginal generator when the storage unit charges.  Therefore, as expected, Figures 14-16 show 

hydro penetration increasing slightly, from about 9% to 12% of total generation.22  Likewise, 

natural gas is usually marginal when the storage unit discharges, and natural gas penetration 

decreases from 3% to 1% of total generation as storage is added to the system.  Since wind has 

essentially no marginal cost of generation, it is never the marginal generator; whether storage is 

present or not, wind is always dispatched when it is available. 

 
Figure 17 shows the change in systemwide carbon emissions with changing storage capacities.  

Carbon emissions decrease slightly (less than 5%) as storage is added to the system.  The 

variability evident in the 10-hour curve is masked in the other curves because fewer different 

capacities were modeled.  This decrease in carbon emissions is not a result of an increasing 

renewable penetration, but of the slight decrease in natural gas generation described above.   

 

Carbon Emissions

34.60
34.80
35.00
35.20
35.40
35.60
35.80
36.00
36.20
36.40
36.60

0 2000 4000 6000 8000 10000

Storage Discharge Capacity (MW)

C
ar

bo
n 

Em
is

si
on

s 
(M

T)

10 hours of
storage

30 hours of
storage

50 hours of
storage

 
Figure 17.  System carbon emissions with various storage capacities. 
 

                                                 
22 In the actual electric power system, hydro generation depends primarily on the available hydro resource, and 
would probably not be affected by changes in energy storage capacity.  However, this does not invalidate the 
conclusion that the generation mix is likely to change only slightly with the addition of energy storage to the system. 
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Conclusions 

My simulation/optimization model of the California electric power system indicates that even in 

the absence of energy storage or any policy to promote renewables, wind penetration is likely to 

increase from 1.5% in 2004 to more than 10% by 2020.  At the same time, pulverized coal 

penetration is likely to increase to more than 50%, unless it is limited by a carbon tax or other 

policy.  If a tax of $50 per ton of carbon is imposed on the system, much of this pulverized coal 

capacity will likely be replaced by IGCC coal with carbon capture and storage.  In addition, with 

this carbon tax, wind penetration will increase up to the wind resource constraint: 18% if only 

high wind speed sites are considered, and significantly more if low-speed sites are included as 

well.  This $50 carbon tax is projected to decrease carbon emissions by nearly 90%, at an 

average cost of $34/tC. 

 
There are two reasons that we might value the addition of energy storage to the electric power 

system: (1) it might decrease the total cost of the system, and (2) it might increase wind 

penetration and/or reduce carbon emissions.  According to my model, if storage were free and 

perfectly efficient, it could decrease the total system cost by about 5%.  Actual storage 

technologies are too costly, at today’s prices, to reduce the system cost.  However, as experience 

is gained with these technologies, their costs are likely to decrease.  Compressed air storage and 

advanced batteries (polysulfide bromide and sodium sulfur) are the most likely to become 

competitive if storage costs decrease in proportion to the percent change in installed capacity.   

 
Surprisingly, it appears that energy storage has only a minor impact on the electricity generation 

mix, including wind penetration.  The presence of storage does not result in an increase in wind 

capacity, because wind capacity appears to be limited more by its capital costs than by its 
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intermittency.  Since storage has a negligible impact of the generation mix, its effect on carbon 

emissions is small as well.  If our goal is to reduce carbon emissions from the electric power 

sector, a policy such as a carbon tax is likely to be more effective than the promotion of energy 

storage. 
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Appendix: Model Description and Mathematical Representation  
 
List of abbreviations: 
CapCosti = Capital cost of generator i ($/MW) 
CapCostSI = Capital cost of storage input device ($/MW) 
CapCostSO = Capital cost of storage output device ($/MW) 
CapCostST = Capital cost of storage tank device ($/MWh) 
Capi = Capacity of generator i (MW) 
CapSI = Input capacity of storage unit (MW) 
CapSO = Output capacity of storage unit (MW) 
CapST = Storage tank capacity (MWh) 
Demt = Electricity demand to be met in hour t (MW) 
FAFi = Fixed availability factor of generator i (set at 1 for non-baseload plants) 
FuelCosti = Fuel cost for generator i ($/MWh) 
FuelCostSO = Fuel cost for storage output device ($/MWh) (only applies to CAES) 
Geni,t = Electric power generated by generator i in hour t (MW) 
LF(yi) = Levelization factor (to convert capital costs to an annual payment), which is a function 

of generator lifetime  
yi = Lifetime of generator i (years)  
ySI = Lifetime of storage input device (years) 
ySO = Lifetime of storage output device (years) 
yST = Lifetime of storage tank device (years) 
LMC = Lower marginal cost threshold for storage  
MCt = System marginal cost in hour t 
MCiter,t = System marginal cost in hour t as calculated in the current iteration of the model 
MCiter-1,t = System marginal cost in hour t as calculated in the previous iteration of the model 
Ni = Number of wind turbines at wind site i 
OMfi = Fixed O&M cost of generator i ($/MW-y) 
OMfSI = Fixed O&M cost of storage input device ($/MW-y) 
OMfSO = Fixed O&M cost of storage output device ($/MW-y) 
OMvi = Variable O&M cost of generator i ($/MWh) 
OMvSO = Variable O&M cost of storage output device ($/MWh) 
r = Interest rate                
SIeff = Efficiency of storage input device 
SIt = Storage input in hour t (MW) 
SIiter,t = Storage input in hour t as calculated in the current iteration of the model (MW) 
SIUiter,t = Storage input in hour t that is actually used in the current iteration of the model (distinct 

from the storage input calculated in the current iteration) (MW) 
SIUiter-1,t = Storage input in hour t that was used in the previous iteration of the model (MW) 
SOeff = Efficiency of storage output device 
SOt = Storage output in hour t (MW) 
SOiter,t = Storage output in hour t as calculated in the current iteration of the model (MW) 
SOUiter,t = Storage output in hour t that is actually used in the current iteration of the model 

(distinct from the storage input calculated in the current iteration) (MW) 
SOUiter-1,t = Storage output in hour t that was used in the previous iteration of the model (MW) 
STt = Quantity in storage in hour t (MWh) 
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UMC = Upper marginal cost threshold for storage  
WFi,t = Fraction of installed wind capacity at site i that is available to generate in hour t (MW) 
WRi = Wind resource available at wind site i (MW) 
 
Objective Function:   
Minimize total annual cost, which includes (1) levelized capital costs, fixed O&M, variable 
O&M, and fuel costs of new and existing generators, and (2) storage costs, including capital 
costs for storage input, output, and tank devices, fixed O&M for input and output devices, and 
variable O&M and fuel costs23 for the output device.  In the formula below, i = 1,2,…20 refers to 
the 20 types of new and previously existing generators in the model, which are listed in the table 
below.  The capacities of existing generators are taken from 2004 California power plant data, 
reduced to reflect retirements through 2020.  The capacities of new generators are decision 
variables in the model (see below).  Mathematically, the objective function is: 
 
MIN  Total annual cost 
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In the formula above, the top line refers to new and existing generator costs (including wind), the 
middle line refers to the storage input and storage tank costs, and the bottom line refers to the 
storage output costs. 
 
Generator types included: 

Existing Generators  New Generators 
Natural gas (simple cycle) Natural gas (simple cycle) 
Natural gas (combined cycle) Natural gas (combined cycle) 
Coal Pulverized coal 
Nuclear IGCC with C sequestration 
Hydro Wind: Tehachapi 
Geothermal Wind: Altamont 
Other renewables (mostly biomass) Wind: San Gorgonio 
Petroleum products Wind: Solano 
Wind: Tehachapi  
Wind: Altamont  
Wind: San Gorgonio  
Wind: Solano  

                                                 
23 The fuel cost of the storage output device does not refer to the cost of fuel that was used to generate the electricity 
that is being stored; rather, it refers to the cost of fuel actually used to remove energy from storage.  The only 
storage technology with an associated fuel cost is compressed air storage, since the storage output device in this case 
involves mixing the compressed air with natural gas. 
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Calculations underlying various terms in the objective function are discussed below. 
 
Decision Variables:  
Capacities of new generators: 
 Capi = Capacity of new generator i 

Where i is one of the 8 new generators listed in the table above. 
Marginal cost thresholds for storage: 
 LMC 
 UMC 
 
Constraints: 
Wind resource:  
The wind capacity included at each site (number of turbines, multiplied by turbine capacity) 
cannot exceed the wind resource available at that site.  “Wind resource” at each site (WRi) is an 
estimate of the MW of wind capacity that could be installed at that site.  Wind capacity is 
assumed to consist of Vestas V80 1.8 MW turbines.  This constraint is equivalent to a limit on 
the number of wind turbines that can be installed at each site. 

 
ii WRN ≤× 8.1  

   
Generation shortfall: 
Demand is not allowed to exceed generation (plus storage output, minus storage input) for more 
than 10 hours during the year. 
 
 (Number of hours in which (demand-generation)>0) ≤ 10 
 
Storage thresholds: 
The lower marginal cost threshold must be smaller than the upper marginal cost threshold, to 
minimize the number of hours during which the storage unit buys and sells at the same time.  In 
addition, both thresholds should be within the range of observed system marginal costs. 
 

UMCLMC ≤  
12.001.0 ≤≤ LMC  
12.001.0 ≤≤UMC  

 
Optimization Procedure: 
For each optimization, I fixed storage output capacity (CapSO), storage input capacity (in all 
cases, I set CapSI equal to CapSO), and the ratio of the storage tank capacity to storage discharge 
capacity (CapST / CapSO).  I then used Solver to optimize the 10 decision variables.  This 
generally required a number of Solver runs.   
 
During these Solver runs, the storage behavior (input and output) in each hour was a function of 
the system marginal cost for the previous hour.  This is less than ideal, because system marginal 
cost can change significantly from hour to hour.  For instance, if the system marginal cost is low 
in hour 1, the storage unit will buy power in hour 2, even if the system marginal cost is high in 
hour 2.  This strategy, therefore, does not maximize the value of the storage system.  Ideally, 
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storage behavior in each hour would instead be based upon the system marginal cost in that hour 
itself.  Unfortunately, this would involve circularity in the model: the marginal cost in any hour 
depends on generator dispatch and storage behavior in that hour; so the storage behavior cannot 
also depend on that marginal cost.   
 
However, a series of iterations can be used to solve this problem.  The general strategy is to 
include two sets of hourly system marginal costs in the model.  One set of marginal costs is 
determined endogenously by the model according to generator dispatch and behavior.  For the 
reason described above, this set of marginal costs cannot also be used to determine same-hour 
storage input and output.  Instead, an exogenous set of marginal costs, derived from marginal 
costs calculated in previous iterations, is used for this purpose.  The goal of the iterations is to 
converge upon a solution in which the two sets of marginal costs are equal; that is, the marginal 
costs used to determine hourly storage input and output are the same as the marginal costs 
resulting from hourly generation and storage behavior.  When such a solution is reached, it is 
essentially the case that storage input and output are based on the system marginal cost in the 
same hour. 
 
The process is as follows: with storage decisions based on system marginal cost from the 
previous hour, I first use Solver to optimize the 10 decision variables.  Holding the resulting 
values of the decision variables fixed for the moment, I then run a series of iterations (described 
in detail below) in order to base storage input and output decisions on the same-hour system 
marginal cost, rather than the previous-hour system marginal cost.  The result of this process is a 
new system marginal cost pattern, hourly generator dispatch, and total system cost.  At this point, 
I re-optimize the decision variables with Solver, but this time storage input and output are 
dependent upon the marginal cost pattern resulting from the iterations, rather than the previous-
hour marginal cost.  I then repeat the iterations.  In some cases, I repeated the entire process 
(optimization and then iterations) additional times.  The reason for repeating the process is to 
more closely approach the globally optimal solution. 
 
Calculations Underlying Objective Function: 
Levelization factor for capital costs: 
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For storage input, output, and tank devices, the yi in the above expression is replaced with ySI, 
ySO, and yST, respectively. 
  
Hourly generation (non-wind): 
Hourly generation of each non-wind generator is equal to the smaller of (1) the sum of demand 
and input to storage in that hour, minus the output of all generators (including storage output) 
that are before the generator of interest in the dispatch order; and (2) the capacity of the 
generator of interest.  For baseload plants, the generator capacity is multiplied by a fixed 
availability factor, to prevent the plant from generating at full capacity all 8760 hours.  Thus, for 
these plants, the annual availability factor is approximated as an hourly constraint.  In the 
formula below, n = 1,2…(i-1) refers to the generators listed above, plus storage output, in 
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dispatch order.  The summation ends with generator (i-1) since this is the generator immediately 
preceding the generator of interest in the dispatch order.  The dispatch order is determined based 
on generator marginal costs (variable O&M plus fuel cost), except for hydro, which is included 
in the dispatch order in a position so as to ensure that the available annual hydro resource is not 
exceeded.24   
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Hourly generation (wind): 
The hourly generation calculation for wind is the same as for non-wind generators except that the 
generation at each wind site cannot exceed the fraction of installed wind capacity that is 
available to generate at that site in that hour, which is a function of the hourly wind speed and the 
wind turbine power curve.  Hourly wind speed data were used for each of the four sites 
considered.  New turbines were assumed to be Vestas V80 1.8 MW turbines, whereas for old 
turbines I used the power curve for the NEG Micon 950 kW. 
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Storage input:  
If the marginal cost in the previous hour is below a specified threshold (LMC), the storage unit 
will charge.  In order to prevent sharp discontinuities in storage behavior with changing marginal 
cost, this behavior is smoothed in the following way.  If the MC is exactly equal to the threshold, 
the storage unit charges at half of its input capacity.  As the MC falls slightly below the 
threshold, the unit approaches full charge capacity; and as the MC rises slightly above the 
threshold, the unit approaches zero input.  The storage input is also limited by the room available 
in the storage “tank” (the capacity of the storage tank minus the amount in the tank in the 
previous hour, taking into account the efficiency of the storage input device). 
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Quantity in storage:  
In any particular hour, the quantity in storage is determined by the quantity that was in storage 
the previous hour, plus the storage input, minus the storage output.  Charge and discharge 
efficiencies are also taken into account. 
 

SOeff
SO

SIeffSISTST t
ttt −×+= −1   

 
                                                 
24 Biomass generation is also energy-limited; however, the installed biomass capacity is small enough that the 
resource constraint is not limiting. 
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Storage output:  
The storage unit only discharges if (1) there is energy available in storage, and (2) the generators 
before storage in the dispatch order are not sufficient to meet demand that hour.  If these two 
conditions apply, the amount of energy that is released depends on how far from the storage 
output threshold (UMC) the MC is.  If the MC is equal to the threshold, the storage unit will 
discharge at 50% of its output capacity; as the MC rises above the threshold, the storage unit will 
approach its full discharge capacity; and as the MC falls below the threshold, the storage unit 
approaches zero discharge.   
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Basing storage behavior on same-hour marginal cost: iterative process 
I will now describe in more detail the iteration process mentioned above.  For each iteration, it is 
important to distinguish two sets of hourly system marginal costs: the marginal costs calculated 
in the current iteration (MCt) and the marginal costs calculated in the previous iteration (MCiter-

1,t).  It is also important to distinguish three sets of storage input and output behavior: storage 
inputs/outputs calculated in the current iteration (SIiter,t and SOiter,t), storage inputs/outputs that 
are actually used in the current iteration (SIUiter,t and SOUiter,t), and storage intputs and outputs 
that were used in the previous iteration (SIUiter-1,t and SOUiter-1,t).   
  
The storage input and output to be used in the current iteration are defined as a weighted sum of 
the input (output) from the previous iteration and the input (output) that is calculated in the 
current iteration, plus constraints to ensure that the storage tank is not overfilled and that it 
cannot discharge when it is empty.  The reason for using a weighted sum is to achieve a gradual 
convergence.  The α in the formulas below can be set to be 0.1 or 0.01, depending on how 
gradual a convergence is required. 
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Formulas for storage input/output calculated in the current iteration (SIiter,t and SOiter,t) are 
identical to the formulas for SI,t and SOt given above, except that they depend on the current-hour 
marginal cost from the previous iteration (MCiter-1,t), rather than the previous-hour marginal cost 
from the current iteration (MCt-1).   
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Each iteration simply involves re-defining SIUiter,t as SIUiter-1,t,and SOUiter,t as SOUiter-1,t, and MCt 
as MCiter-1,t.  By this process, the storage behavior and marginal costs change gradually until the 
marginal cost from the previous iteration no longer differs significantly from the marginal cost 
from the current iteration.  At this point, we have converged upon a consistent solution in which 
the storage behavior essentially depends on the current-hour marginal cost.  
 
System marginal cost: 
The marginal cost of electricity in hour t (MCt) is the marginal cost of the most expensive 
generator (including wind and the storage output device) operating that hour.   
 
Generator marginal costs: 
For baseload plants, MC does not depend on generator output; it is simply the sum of the 
variable O&M and fuel costs per MWh for that generator: MCi,t = MCi 
 
In order to make system marginal cost a relatively smooth function of total power output, the 
marginal cost of variable load and peaking plants depends on generator output.  The smoothness 
of this function is useful for convergence of the model, and is also more realistic than a simple 
stepping-stone function (in which each type of generator has a single marginal cost regardless of 
its output).  For simplicity, I made MCi,t a linear function. The marginal cost of each generator is 
equal to the sum of its variable O&M and fuel costs when the generator is operating at half of its 
capacity.  When it is generating less than half capacity, the MC is lower than this.  At its lowest, 
the MC for this generator is the average of the sum of variable O&M and fuel costs for this 
generator, and the sum of variable O&M and fuel costs for the next-cheapest generator. When 
the generator is operating at more than half its capacity, its MC is higher.  At full capacity, the 
MC is the average of the sum of variable O&M and fuel costs for this generator, and the sum of 
variable O&M and fuel costs for the next most expensive generator.  That is, When Geni,t = 0, 
MCi,t is the average of MCi and MCi-1, and when Geni,t is at its maximum ( iiti FCFCapGen ×=, ), 
MCi,t is the average of MCi and MCi+1. 
  
 
 


