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Abstract

When �rms can produce any level of output, strategic forward trading can enhance

competition in the spot market. However, �rms usually face capacity constraints, which

change the incentives for strategic trading ahead of the spot market. This paper studies

these incentives through a model where capacity constrained �rms engage in forward

trading before they participate in the spot market, which is organized as a multi-unit

uniform-price auction. The model shows that when a capacity constrained �rm commits

itself through forward trading to a more competitive strategy in the spot market, its

competitor prefers not to follow suit in the forward market and thus behave less com-

petitively in the spot market than otherwise. Moreover, the expected consumer surplus

is generally reduced as a consequence of less intense competition in the spot market.

�I am grateful to my advisors, Peter Cramton, Lawrence Ausubel and John Rust, for their guidance and
support. I would also like to thank Daniel Aromí, Daniel Vincent and seminar participants at the University
of Maryland and 2007 Latin American Meetings of the Econometric Society for helpful comments and
discussions. Any remaining errors are my own responsibility. Comments welcome at herrera@econ.umd.edu
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Introduction

It is generally argued that forward trading is socially bene�cial. Two of the most common

arguments state that forward trading allows e¢ cient risk sharing among agents with dif-

ferent attitudes towards risk and improves information sharing, particularly through price

discovery. It is also believed that forward trading enhances competition in the spot market

by committing �rms to more aggressive strategies. A �rm, by selling forward, can become

the leader in the spot market (the top seller), thereby improving its strategic position in

the market. Still, when �rms compete in quantities at the spot market, every �rm faces the

same incentives, resulting in lower prices and no strategic improvement for any �rm. This

is Allaz and Vila�s (1993) argument. Green (1999) shows when �rms compete in supply

functions, forward trading might not have any e¤ect on the intensity of competition in the

spot market, but in general it will enhance competition. This pro-competitive argument

has been used to support forward trading as a market mechanism to mitigate incentives to

exercise market power, particularly in electricity markets.

The pro-competitive feature of forward trading has been challenged by recent papers. Ma-

henc and Salanié (2004) show when, in the spot market, �rms producing substitute goods

compete in prices instead of in quantities, �rms take long positions (buy) in the forward

market in equilibrium. This increases the equilibrium spot price compared to the case with-

out forward market. In this paper as in Allaz and Vila�s paper, �rms use forward trading

to credibly signal their commitment to more pro�table spot market strategies. However, as

Bulow et al. (1985) point out, prices are strategic complements, while quantities are strate-

gic substitutes, which is the reason for the di¤erent equilibrium forward positions taken by

�rms in both papers, and the resulting e¤ect on the intensity of competition. Liski and

Montero (2006) show that under repeated interaction it becomes easier for �rms to sustain

collusive behavior in the presence of forward trading. The reason is that forward markets

provide another instrument to punish deviation from collusive behavior, which reduces the

gains from defection.

However, all these papers ignore a key point� that �rms usually face capacity constraints,
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which a¤ects their incentives for strategic trading ahead of the spot market. When a

capacity constrained �rm sells forward, it actually softens competition in the spot market

from the perspective of competitors. In the case where there are two �rms and one sells its

entire capacity forward, its competitor becomes the sole supplier in the spot market, which

implies it has the power to set the price.

The following is an example of how forward trading can a¤ect the intensity of competition

in the spot market when �rms are constrained on the quantity they can o¤er. The In-City

(generation) capacity market in New York is organized as a multi-unit uniform-price auc-

tion, where the market operator (NYISO) procures capacity from the Divested Generation

Owners (DGO�s). Two of the dominant �rms in this market are KeySpan, with almost 2:4

GW of installed capacity and, US Power Gen, with 1:8 GW. Before May 2006, US Power

Gen negotiated a three years swap (May 2006 �April 2009) with Morgan Stanley for 1:8

GW, by which it commits to pay (receive from) Morgan Stanley 1:8 million times the di¤er-

ence between the monthly auction price, p and $7:57 kw-month, whenever such di¤erence

is positive (negative). Morgan Stanley closed its position by negotiating with KeySpan the

exact reverse swap.

The �rst swap works for US Power Gen as a credible signal that it will bid more aggressively

in the monthly auction, since US Power Gen bene�ts from lower clearing prices in that

auction. Also, this �nancial transaction could be explained on risk hedging grounds. The

swap reduces US Power Gen�s exposure to the spot price by locking in, at $7:57 per kw-

month, the price it receives for those MWs of capacity its sells in the spot market. On

the other side, the outcome of these transactions left KeySpan owning, either directly or

�nancially, 4.2 GW of capacity for three years, which gave it a stronger dominant position

in the In-City capacity market, and the incentive to bid higher prices in the monthly auction

than otherwise. Moreover, it is di¢ cult to explain this �nancial transaction on risk hedging

grounds, since the swap increases KeySpan�s exposure to the uncertain price of the monthly

auction, by buying at the �xed price and selling at a variable price (the spot price).

As this paper shows, when capacity constrained �rms facing common uncertainty compete
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in a multi-unit uniform-price auction with price cap, strategic forward trading does not

enhance competition. On the contrary, �rms use forward trading to soften competition,

which leaves consumer worse o¤. The intuition of this result is that when a capacity

constrained �rm commits itself through forward trading to a more competitive strategy

at the spot market, its competitor faces a more inelastic residual demand in that market.

Hence, its competitor prefers not to follow suit in the forward market and thus behaves

less competitively at the spot market than it otherwise would, by in�ating its bids. Under

the assumptions made here, once US Power Gen negotiated the swap with Morgan Stanley,

KeySpan would have the incentive to bid higher prices in the monthly auction, than if there

were no trading ahead of it, even if KeySpan did not buy the swap from Morgan Stanley.

When studying the e¤ect of forward trading on investment incentives in a model with

uncertain demand and Cournot competition in the spot market, Murphy and Smeers (2007)

�nd that in some equilibria of the forward market one of the �rms stays out of the market

while the other �rm trades. These equilibria come up when the capacity constraint of the

latter �rm binds at every possible realization of demand. Grimm and Zoettl (2007) also

study that problem by assuming a sequence of Cournot spot market with certain demand at

each market, but varying by market. They also �nd that when a �rm�s capacity constraint

binds in a particular spot market, this �rm is the only one trading forwards which mature at

that spot market. These results are in the same line as those on this paper. However, when

the spot market is organized as a uniform-price auction, as is the case here, they hold even

if the capacity constraints only bind for some demand realizations. Also, by modeling the

spot market as a uniform-price auction with uncertain demand, the results on this paper

are better suited for the understanding of wholesale electricity markets.

The results here are also related to those on demand/supply reduction in multi-unit uniform-

price auctions. As Ausubel and Cramton (2002) show, in multi-unit uniform-price procure-

ment auctions, bidders have an incentive to reduce supply in order to receive a higher price

for their sales. This incentive grows with the quantity supplied and with the asymmetry

on bidders� size. Hence, large bidders make room for small bidders. When a capacity

constrained �rm sells forward, it behaves like a smaller bidder in the auction. Therefore,

4



the incentive to in�ate bids increases for the other bidders in the auction. Consequently,

strategic forward trading can be reinterpreted as a mechanism that allows �rms to assign

themselves to di¤erent markets, in order to strengthen their market power, which leaves

�rms better o¤, but at the expense of consumers who end up worse o¤. As the paper will

show, usually the smaller �rm decides to trade most of its capacity through the forward

market, with the larger �rm becoming almost the sole trader on the spot market.

The goal of this paper is not to challenge the general belief that forward trading is socially

bene�cial, but yes to challenge the pro-competitive view of forward trading by highlighting

the impact of capacity constraints on the incentives for strategic forward trading.

The paper is organized as follows. Section 1 describes the model and its main assumptions.

Section 2 characterizes the unique equilibrium of the spot market. Section 3 study the in-

centives for strategic forward trading and characterizes the equilibria of the forward market.

Section 4 concludes. All the proofs are in the appendix.

1 The Model

There are two �rms which produce and sell an homogeneous good in the spot market (date

1) to satisfy demand from non strategic consumers. At date 0, before the spot market

takes place, �rms can sell forward contracts (i.e. take short positions)1, in a competitive

forward market, with the good traded in the spot market being the underlying good of the

forward contracts. Also, at date 0 competitive risk neutral traders take positions on the

forward market2. As it is usually assumed, forward contracts mature at the time the spot

market meets, date 1. For simplicity, it is assumed the discount factor between forward and

spot markets is one. If a �rm sells forward at price ph and the price in the spot market

is p, the payo¤ of the forward contract at maturity will be
�
ph � p

�
per unit. Therefore,

forward contracts can be interpreted as specifying the seller receives (pays) the di¤erence
1As the (longer) working paper version shows, allowing �rms to take long forward positions does not

change the results.
2 It is not necessary that all traders be risk neutral. As long as a large proportion of them are so, the

results hold. Also, consumers could be allowed to participate in the forward market without any change on
the results.
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between the forward price, ph, and the spot price, p, if such di¤erence is positive (negative).

This is just a �nancial forward, which is settled without physical delivery, but through an

equivalent monetary payment3. It is assumed along the paper there is no risk of default

from any party involved in a transaction in the forward market. Moreover, no contract can

be renegotiated in the spot market.

The demand faced by both �rms in the spot market, D (p; x), is assumed to be uncertain,

with x being a demand shock which can take any value on the interval [0;M ]. F (x) is

the cumulative distribution function of the demand shock, which is assumed to be strictly

increasing, continuous and piecewise continuously di¤erentiable. The spot market is mod-

eled as a multi-unit uniform-price auction, where the auctioneer�s goal is to ensure enough

supply to match demand. A �rm�s strategy in the spot market consists of an increasing

supply function. The realization of the demand uncertainty takes place at date 1, but after

�rms have chosen their supply functions. Firms are assumed to be capacity constrained,

with ki representing the installed capacity of �rm i. Each �rm�s cost function, Ci (qi) where

qi is the quantity produced by �rm i, is assumed to be increasing, piecewise continuously

di¤erentiable and convex.

Firms� cost functions and installed capacities are common knowledge. At date 0, �rms

simultaneously and independently chose the amount of forward contracts each one wants

to sell. Then, at date 1 given its portfolio of forward contracts and that of its competitor,

each �rm chooses the supply function it will submit to the auctioneer. This choice is also

made simultaneously and independently by both �rms. Once the auctioneer has the supply

functions from both �rms, the demand uncertainty is realized.

2 Spot Market

The equilibrium concept to be used is the subgame perfect Nash equilibrium. Hence, the

�rst step on the study of �rms�incentives to trade forward at date 0 is solving for the spot
3As Mahenc and Salanié (2004) point out, most actual forward markets function as markets without

physical delivery. Moreover, the qualitative results would not change if they assumed to be settled through
physical delivery.
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market equilibrium for every pair of forward transactions, h = (h1; h2). At date 1 before

the realization of the demand uncertainty, �rms chose their optimal supply functions taking

h as given, with that for �rm i (i = 1; 2) represented by si (p;h). In order to carry out a

meaningful analysis of the forward market, it is necessary to obtain close form solutions

for the equilibrium spot supply functions. However, as it will become clear later, that

might turn out cumbersome. For that reason, the spot market demand will be assumed to

be inelastic, D (p; x) = x, which will simplify the analysis4. To guarantee existence of a

relevant equilibrium, a price cap, p, will be assumed. Also, proportional rationing will be

used when required.

The literature on supply function equilibrium shows that when demand is certain or when

it is uncertain but with the highest possible demand, M in this case, lower than total

installed capacity, k1+k2, there exist multiple equilibria in the spot market (see Klemperer

and Meyer (1989)). However, when there is positive probability of both capacity constraints

binding, the spot market has a unique equilibrium (see Holmberg (2004) and Aromí (2007)).

For this reason, it is assumed that M � k1 + k25.

Firms�supply functions depend on the forward portfolio, h. However, for ease of notation,

such reference will be suppressed hereafter, si (p) � si (p;h). Since the spot market is

modeled as a uniform-price auction, the equilibrium spot price for a given pro�le of supply

functions, (s1 (p) ; s2 (p)), and quantity demanded, x, is the lowest price that clears the

market:

p (x; s) =

8><>: inf fp 2 [0; p] : x � s1 (p) + s2 (p)g

p

if x < S (p)

otherwise
(1)

where s =(s1;s2) and S (p) is the aggregate supply function.

Remember that the payo¤ of a forward transaction, when �rms have submitted the pro�le

s of supply functions and x is the realization of the spot demand, is just
�
ph � p (x; s)

�
per

4This might seem a strong assumption. However, for example, wholesale electricity demand can be closely
approximated by an inelastic demand. Moreover, the modeling in this paper �ts the functioning of most
wholesale electricity markets.

5This is also a reasonable assumption in many markets, and particularly in wholesale electricity markets.
Another option is to interpret D (p; x) as the residual demand after substracting the bids from non-strategic
�rms.
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unit, with ph being the forward price. Hence, if �rm i (i = 1; 2 and i 6= j) sold hi units in

the forward market, its expected pro�ts can be written as:

�i (si; sj ;h) = E
h
p (x; s) qi (x; s)� Ci (qi (x; s)) +

�
ph � p (x; s)

�
hi

i
(2)

where qi (x; s) is the quantity delivered in equilibrium by �rm i for a given realization of

the demand and a given pair of supply functions. If there is no excess demand, qi (x; s) =

si (p (x; s)), otherwise qi (x; s) < si (p (x; s)) due to rationing6.

The goal of �rm i when choosing its spot market supply function, si (p), is to maximize its

expected pro�ts, represented by (2), subject to its capacity constraint and taking date 0

forward sales as given.

Aromí (2007) characterizes the unique equilibrium when hi = 0 for i = 1; 2. The re-

mainder of this section extends his results to the case where �rms have previously sold

forwards. Let ci (qi) represent the marginal cost function of �rm i, and de�ne p0 =

inf fp � 0 : s1 (p) > 0 and s2 (p) > 0g.

Lemma 1 When �rms have sold forward, the equilibrium supply functions are continuous

for every price p 2 (p0; p) and 0 � p0 � max fc1 (0) ; c2 (0)g :

Lemma 2 When �rms have sold forward, the equilibrium supply functions are strictly in-

creasing at every p 2 (p0; p).

Aromí showed when no �rm has not traded ahead of the spot market, both �rms o¤er all

of their installed capacity at the price cap, and the equilibrium supply function of at least

one �rm is continuous at p. That result still holds when �rms have sold forward at date

0. This is so, because it is not pro�table for �rms to reduce the quantity supplied at the

price cap below its installed capacity, even when �rms have sold forward. Moreover, since

6When there is excess demand at the equilibrium price p, then qi (x; s) = si (p) + (x� S (p))
si(p)�si(p)
S(p)�S(p) ,

where si (p) � lim
�!0

si (p� �) ; si (p) � lim
�!0

si (p+ �), and the same applies for the aggregate supply.
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equilibrium supply functions are continuous for prices up to p, if lim
p!p

qi (p) < ki for both

�rms, at least one of them will �nd pro�table to deviate and sell more quantity at prices

just below the price cap, no matter whether they sold forward or not.

Firm i�s residual demand is di (p;x) � max f0; x� sj (p)g. The collection of price-quantity

points that maximize �rm i�s ex-post pro�ts given �rm j�s supply function form an ex-post

optimal supply function. Since the uncertainty in the model, which comes from the additive

demand shock, causes �rm i�s residual demand to shift horizontally without a¤ecting its

slope, the ex-post optimal supply function is also the ex-ante optimal supply function, the

one that maximizes (2) given �rm j�s supply function. This equivalence between ex-ante and

ex-post optimal supply functions holds as long as �rm are risk-neutral and the uncertainty

can be represented by a single random variable that only a¤ects �rms� residual demand

additively. If �rms are risk-averse and the uncertainty in the model enters additively, the

ex-ante optimal supply function is not equivalent to the supply function that maximizes

ex-post utility, but to the one that maximizes ex-post pro�ts.7

Therefore, �rm i�s optimization problem can be represented as one where �rm i chooses

the price that maximize its pro�ts for each particular level of demand, given its competitor

(�rm j) supply function.

max
p(x)

�
p (x) (x� sj (p (x))) +

�
ph � p (x)

�
hi � Ci (x� sj (p (x)))

�
s:t: 0 � x� sj (p (x)) � ki

(3)

The �rst order conditions for an interior solution for �rms 1 and 2 give us the following sys-

tem of di¤erential equations, which once x� sj (p (x)) is replaced by si (p (x)) characterizes

the equilibrium supply functions:

s02 (p (x)) =
s1 (p (x))� h1

p (x)� c1 (s1 (p (x)))
(4)

s01 (p (x)) =
s2 (p (x))� h2

p (x)� c2 (s2 (p (x)))
(5)

7See Hortaçsu and Puller (2007) for a discussion of the case where �rms have private information and
they can be risk-averse.
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The initial conditions of the equilibrium supply functions depend on both �rms�forward

transactions. The following lemma characterizes them.

Lemma 3 The equilibrium supply function of �rm i satis�es: si (ci (hi)) = hi; and 8p <

p0 si (p) = hi if ci (hi) � p0 otherwise si (p) = si (p0) < hi, i = 1; 2:

Since forwards are assumed to be purely �nancial contracts and there is no risk of default nor

renegotiation is allowed, a �rm�s residual demand might be lower than its forward portfolio.

In such a case the �rm can be seen not as a seller in the spot market, but as a net buyer.

To see this, rewrite (3) as �hi = p (si (p)� hi) + Ci (si (p)) + phhi, where the reference to

x have been suppressed for ease of notation. If di (p) < hi, then si (p) < hi, therefore, the

�rst term which is the net revenue from the spot market would be negative. In that event,

�rm i does not have any incentive to exercise monopoly power over its residual demand by

pushing the equilibrium price as high as it is pro�table. On the contrary, it has incentive to

exercise monopsony power by driving down the equilibrium price as much as it is pro�table.

For example, if 0 < si (p0) < hi, the optimal strategy for �rm i will be to o¤er any quantity

below si (p0) at the lowest possible price, zero. This is the intuition behind lemma 3.

Lemmas 1 through 3 and equations (4) and (5) characterize the equilibrium pro�le of supply

functions. It is easy to see from the system of �rst order conditions and the proof of lemma

3 that such supply functions are actually mutual best responses; hence, there exists at

least one equilibrium of the spot market. As Aromí shows for the case where �rms have

sold no contracts, the monotonicity and continuity of the pro�le of supply functions with

respect to the boundary conditions at the price cap ensure uniqueness of the equilibrium

in supply functions. It is also easy to see from equations (4) and (5) that when �rms

traded in the forward market, the pro�le of supply functions de�ned by those equations

is also monotonic and continuous with respect to the boundary conditions at p. Hence,

the equilibrium de�ned by lemmas 1 through 3 and equations (4) and (5) is the unique

equilibrium in supply functions when �rms have previously sold forwards.

By selling forward at date 0, �rm i decreases not only its net revenues from the spot
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market, which are p (si (p)� hi), but also its marginal net revenues. However, its cost and

its residual demand are not a¤ected. Hence, given the strategy of its competitor, once �rm

i sold forward at date 0, its strategy in the spot market, si (p), becomes more aggressive

than if it did not sell at date 0. Particularly, it can be seen from equations (4) or (5) that

given the strategy of �rm j, the higher is hi, the lower is the price chosen by �rm i for any

realization of di (x). Hence selling contracts shifts �rm i�s supply function outwards. As

a consequence, a forward sale is just a credible commitment device for a more aggressive

selling strategy in the spot market.

When �rms are capacity constrained, as is the case in this paper, equations (4) and (5) are

not enough to characterize the e¤ect of forward transactions on the spot market equilibrium,

the conditions on the supply functions at the price cap are also important. Equilibrium

supply functions are strictly increasing at every price on the interval (p0; p), which means

no �rm o¤ers in equilibrium its total installed capacity at a price below the price cap.

Therefore, forward sales could have an impact on the slope of the supply functions, no

matter whether they are linear in prices or not.

When �rms face no capacity constraints and there is no price cap, there exist multiple

equilibria of the spot market. When marginal costs are constant and symmetric, with

Ci (qi) = cqi, the supply functions are linear in price in every equilibria. Moreover, their

slopes, which are symmetric, are independent of forward positions and only the intercept

of each �rm�s equilibrium supply function depends on its own forward position8. Hence,

under these assumptions, there is a clear relationship between forward transactions and

equilibrium spot supply functions, which is not necessarily the case when equilibrium supply

functions are non linear in price.

The goal of this paper is to study how capacity constraints shape �rms� incentives for

strategic forward trading. Hence, assuming constant and symmetric marginal costs is a

sensible choice, since in this way the e¤ect of capacity constraints can be clearly identi�ed.

All of this can be seen on the appendix, where the system of equations given by (4) and (5)

8The di¤erence among all the possible equilibria for a given pro�le of forwards, h, is just the slope of the
supply functions.
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is solved.

When �rms are capacity constrained and there is a price cap9, the supply functions in the

unique equilibrium are still linear in prices. However, now not only the intercept depends on

forward positions, but also the slope of the equilibrium supply functions. Let�s de�ne kai =

max f0; ki � hig as �rm i�s adjusted capacity and kam = min fka1; ka2g. The following

expressions de�ne the equilibrium supply functions, which are calculated on the appendix.

si (p) =

8>>>><>>>>:
�i + �p0 p � [0; p0]

�i + �p p � (p0; p)

ki p = p

i = 1; 2 (6)

with

�i = hi � �c; � = kam
p�c (7)

p0 = c�
min fh1; h2g

�
(8)

As lemma 3 states, when p = c, the quantity supplied by �rm i equals its short forward

position, si (c) = hi. Additionally, if ka1 < ka2, then the supply function of �rm 1 is

continuous at p, while the lim
p!p

s2 (p) = k2� (ka2 � ka1) < k2, which means �rm 2 withholds

(ka2 � ka1) units.

Let�s say that �rm i is relatively more aggressive than �rm j in the spot market, if its capac-

ity constraint binds at a lower realization of demand than that of �rm j. Now, this implies

the relatively less aggressive �rm is the one that withholds part of its installed capacity in

the spot market. In the case of constant symmetric marginal costs, the di¤erence in adjusted

capacity is not only the right measure for relative aggressiveness in the spot market, but it

also represents the quantity withheld in that market. When �rms have symmetric constant

marginal costs, but asymmetric installed capacities and they sold nothing at date 0, the

optimal strategy for the largest �rm is to mimic the other �rm at prices on the interval
9The role of the price cap is to ensure the existence of a relevant equilibrium, otherwise �rms would be

o¤ereing every unit at a price of in�nite.
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[c; p) and then o¤er its extra capacity at the price cap10. Since in equilibrium �rms o¤er

any quantity up to its forward holdings at prices below their marginal cost, �rm i�s adjusted

capacity represents the portion of �rm i�s installed capacity that is o¤ered at prices above

marginal and average cost. Therefore, the �rm with the largest adjusted capacity, the less

aggressive one, withholds its extra adjusted capacity and o¤ers it at the price cap.

When costs are not symmetric, which �rm is relatively more aggressive depends not only

on the di¤erence in adjusted capacity, but also on the cost di¤erence. For example, if �rms

are symmetric in capacity and they have not sold any forwards at date 0, but their constant

marginal costs are di¤erent, the �rm with the lowest marginal and average cost will be

more aggressive in the spot market, even though both �rms have exactly the same adjusted

capacity. Therefore, di¤erence in adjusted capacity as well as di¤erence in costs are the

factors that determine which �rm will be relatively more aggressive in the spot market.

3 Forward Market

At date 0 �rms compete in the forward market by choosing the amount of forwards they

want to sell, while competitive traders take forward positions. The competitive assumption

together with the neutrality towards risk by �rms and traders implies that (2) becomes:

�i (hi; hj) = E [p (x;h) qi (x;h)� cqi (x;h)] (9)

Equations (6) - (8) de�ne the equilibrium supply functions in the spot market. Now using

them and the demand, D (p; x) = x, the equilibrium spot price for a given vector of forward

transactions, p (x;h), can be written as:

p (x;h) =

8>>>><>>>>:
0 0 � x � S

x�h1�h2
2� + c S < x < S

p x � S

(10)

10Since the smaller �rm has already exhausted its capacity, consumers can only buy from the largest �rm.
Hence, the optimal price is p.
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where, S � lim
p!0

S (p) = h1 + h2 + 2� (p0 � c) and S � lim
p!p

S (p) = jka1 � ka2j. Both

�rms�equilibrium supply functions, and therefore the aggregate supply function, are strictly

increasing only for demand realizations on the interval
�
S; S

�
.

The quantity delivered by each �rm in equilibrium in the spot market depends on the

demand realization, installed capacity and forward sales. When x 2 [0; S], if p0 is strictly

positive the quantity delivered by �rm i can be x or zero, depending on whether �rm i

supplies a strictly positive quantity at p0 or not.11. However, if p0 equals zero, �rm i delivers

x �i
�i+�j

in equilibrium in the spot market12. When x 2
�
S; S

�
the quantity delivered by

�rm i is just given by plugging p (x;h) into (6). If x 2
�
S; k1 + k2

�
, the �rm with the lowest

adjusted capacity delivers its entire installed capacity, while the other �rm delivers the extra

quantity needed to match demand, and when x 2 (k1 + k2;M ] each �rm delivers its entire

installed capacity. Hence, �rm i�s spot pro�ts as a function of the demand realization and

forward sales are represented by (11).

As it can be seen from equations (6) - (8), the higher a �rm sales at date 0, the more

aggressive its spot market strategy will be, �i increases with hi. If there were no capacity

constraints and no price cap, this would be the only e¤ect of forward transactions on the

spot market.

Hence, if by selling forward �rm i does not trigger any response on its competitor, then

�rm i will have no incentive to sell them. Firm i could have taken the same more aggressive

strategy in the spot market without selling forward, but it did not do so, because it would

have decreased its expected pro�ts. Firm i�s more aggressive strategy weakly increases its

sales for every demand realization, but it also weakly decreases the equilibrium spot price,

with the latter e¤ect being the dominant one. This is the reason why �rms would not take

11Remember that p0 = inf fp : s1 (p) > 0 and s2 (p) > 0g. Therefore, if p0 is strictly positive at most one
�rm o¤ers a strictly positive quantity at this price.
12This comes from assuming proportional rationing when there is excess supply.
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short forward positions if there were no capacity constraints nor price cap.

�i (x;h) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�Ii

�IIi

�IIIi

= 0

= �cx

= �cx �i
�1+�2

if hi � �c & hi � hj

if hi > hj & hj � �c

if hi > �c & hj > �c

9>>>>=>>>>; 0 � x � S

�IVi =
(x�hj)2�h2i

4�
S < x < S

�Vi

�V Ii

= (p� c) (x� kj)

= (p� c) ki

if kai < kaj

if kai � kaj

9>=>; S � x < K

�V IIi = (p� c) ki K � x �M
(11)

However, when �rms face capacity constraints and a price cap; if �rm j�s adjusted capacity

is the smallest of both, then �rm i will not sell forward, because its more aggressive strategy

will not trigger any response from �rm j. But, when �rm i�s installed capacity binds at

lower demand realizations than that of �rm j (kai < kaj), an increase in the amount of

forwards �rm i sells, not only commits �rm i to a more aggressive strategy in the spot

market, but also gives �rm j the incentive to in�ate its bids (or withhold its supply) even

more. When �rm i�s adjusted capacity is the smallest one, an increase in �rm i�s forward

sales decreases the elasticity of its supply function and therefore, the elasticity of �rm j�s

residual demand. Hence, �rm j has an incentive to increase the prices at which it o¤ers

every single unit. Therefore, when �rms are capacity constrained, �rm j�s response might

be strong enough to give �rm i the incentive to sell forwards at date 0.

Expected spot pro�t is a continuous function of forward transactions, but this function is

not di¤erentiable everywhere. The derivative of �i with respect to hi does not exist at

hi = ki � kj + min fhj ; kjg (where kai = kaj). Moreover, the left hand side derivative is

negative, while the right hand side derivative will never be smaller than the former and it
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could even be positive. Hence, it is not guaranteed that �i (hi; hj) is quasi-concave in hi13.

As a consequence, existence of pure-strategy equilibria is not guaranteed for every demand

distribution. However, as theorem 1 states, only one particular type of equilibrium might

exists.

Theorem 1 In every possible pure-strategy equilibrium of the forward market, only one

�rm sells forward, but less than its installed capacity.

The intuition behind theorem 1 is that at least one of the �rms has an incentive to sell

forwards when its competitor does not sell, because the response it triggers in its competitor

is strong enough to increase its expected pro�ts. Also, no �rm wants to hedge its entire

installed capacity, because the negative impact on the spot price would be too large, since

its optimal strategy at date 1 would be to o¤er every single unit at a price of zero. Finally,

there can not be an equilibrium where both �rms sell strictly positive amounts at date 0,

because only one �rm at a time can trigger the necessary response on its competitor to turn

a forward sale in a pro�table action.

Now, by assuming that demand is uniformly distributed on [0;M ] a close form solution for

the equilibrium forward sales, h�i , can be obtained. This allows the study of some features

of the equilibria and particularly of the e¤ect of forward transactions on the distribution of

total welfare between consumers, which are represented by the auctioneer, and producers.

De�ne c = �p, where � 2 (0; 1).

Theorem 2 When x � U [0;M ],
�
h�i ; h

�
j

�
=
�
2(p�c)
2p+c ki; 0

�
is the equilibrium of the forward

market if:

(2 + �)

33=2�
� ki

kj�
9�3 + 4 (1� �)3

�
(2 + �)

36�3 � 9�4 + 16
3 (1� �)

4 � ki
kj�

4� �2
�
(1� �) �

2
�
� � �2 + 2�3

� � ki
kj

13The best response correspondences might not be closed-graph (be upper hemi-continuous).
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Moreover, assume without loss of generality that k1 > k2. If k1� k2 > b, where b is de�ned
by:

b2 + b � 4�

2 + 3�

�
k2 �

4

3

�
1� �
2 + 3�

�
k22 = 0

then, there is a unique equilibrium with �rm 2 selling h�2 =
2(p�c)
2p+c k2.

A very interesting feature of the equilibrium is that when the asymmetry between �rms in

terms of their installed capacity is larger than b, there is a unique equilibrium of the forward
market, where only the smaller �rm sells forward. Obviously, having a unique equilibrium

is a very interesting feature, but the unique equilibrium in itself is very striking.

In equilibrium, �rms split the two markets (forward and spot) between them. When

jk1 � k2j > b, the small �rm trades mainly through the forward market, while the large

�rm becomes almost the sole seller in the spot market. There is no equilibrium where the

large �rm sells forward at date 0, because the small �rm is relatively so small that its opti-

mal response to the large �rm�s more aggressive strategy in the spot market is not enough

to o¤set the downward impact of this latter strategy on the spot price; and on the forward

price through the no arbitrage condition. Hence, when seeing in a market that only the

small �rm takes a hedge against the uncertain price, it would be risky to draw the standard

conclusion that this is a sign the smaller �rm is more risk averse than the larger one, since

as this paper shows this might happen even when �rms are risk neutral.

When a �rm takes a short forward position in equilibrium, the size of the forward sale is

independent of the other �rm�s installed capacity. Hence, kj only plays a role on determining

whether �rm i sells at date 0, but not on how much it sells when it does.

Since demand is assumed to be inelastic, forward trading can not increase or decrease

expected welfare, but it can impact its distribution between consumers and producers. As

the following theorem shows, �rms are generally better o¤ in aggregate thanks to forward

trading. But, the other side of this story is that consumer are worse o¤ by �rms�strategic

use of forward trading, since it allows �rms to step up their exercise of market power.
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Theorem 3 When �rms are capacity constrained and the small �rm takes a short for-

ward position in equilibrium, strategic forward trading reduces expected consumer surplus.

However, when the large �rm is the one taking the short position in equilibrium, expected

consumer surplus decreases if jki � kj j < e, but increases if e < jki � kj j � b; where e is
de�ned by:

2 + (2k2)  �
(1� �)2

3 (1 + 2�)
k22 = 0 (12)

4 Conclusion

Forward trading allows e¢ cient risk sharing among agents with di¤erent attitudes toward

risk and improves information sharing, particularly through price discovery. It is also be-

lieved that forward trading enhances competition in the spot market. The standard argu-

ment claims a �rm, by selling forward, can become the leader in the spot market (the top

seller), thereby improving its strategic position in the market. Still, every �rm faces the

same incentives, resulting in lower prices and no strategic improvement for any �rm. Due

to this e¤ect on competition, forward trading has become a centerpiece of most liberalized

electricity markets. However, as this paper showed, this argument does not hold when �rms

face capacity constraints.

When capacity constrained �rms facing common uncertainty compete in a multi-unit uniform-

price auction with price cap, strategic forward trading does not enhance competition. On

the contrary, �rms use forward trading to soften competition, which leaves consumer worse

o¤. The intuition of this result is that when a capacity constrained �rm commits itself

through forward trading to a more competitive strategy at the spot market, its competitor

faces a more inelastic residual demand in that market. Hence, its competitor prefers not to

follow suit in the forward market and thus behaves less competitively at the spot market

than it otherwise would, by in�ating its bids. Therefore, forward trading allows �rms to step

up the exercise of market power, which leaves them better o¤ at the expense of consumers.

The results of this paper generalize to the standard auction case where the auctioneer is the
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seller and the bidders are the buyers. Bidders in uniform-price auctions have an incentive

to reduce demand in order to pay a lower price for their purchases. This incentive grows

with the quantity demanded. In a standard auction, when a bidder with demand for a

�nite quantity buys forward, it behaves like a smaller bidder in the auction. Therefore, the

incentive to reduce their bids increases for the other bidders in the auction. Consequently,

strategic forward trading intensify demand reduction in standard uniform-price auctions,

which reduces seller�s expected revenue.

Appendix

Proof of lemma 1. This lemma states that if both �rms are o¤ering strictly positive

quantity in equilibrium and the spot price is below the price cap, equilibrium supply func-

tions are continuous when �rms have sold forwards. This proof follows Aromí�s proof for

the case when �rms did not sell forward.

Assume �rm j o¤ers
�
qj � qj

�
> 0 at a price p� 2 (p0; p). For any subset [p�; p� + "] �rm i

must o¤er additional quantity, otherwise �rm j can pro�tably deviate by withholding supply

at p�. Let�s de�ne p"i (p
�) = inf fp : si (p) � si (p�) + "g, and observe that lim

"!0
p"i (p

�) = p�.

For example, �rm i can deviate by submitting the following supply function:

bs"i (p) =
8><>: si (p

�) + " if p 2 (p� � "; p"i (p�))

si (p) otherwise
(A.1)

The e¤ect of this deviation on the expected pro�ts can be split in two parts, a loss from

lower prices, 
", and a gain from larger sales, �".

The loss is bounded above by:


" < (p"i (p
�)� p� + ") (si (p"i (p�))� hi)Pr" (�p) (A.2)
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Pr" (�p) is the probability that the price changes due to the deviation by �rm i, and clearly

it converges to zero as " does so. Moreover, the di¤erence in prices also converges to zero

with ", hence the derivative of the upper bound is zero at " = 0.

Now, the gain �", is bounded below by:

�" > (p� � "� ci (si (p�) + "))�E" (qi) (A.3)

The unit markup is strictly positive at " = 0. In addition, as Aromí shows, the change

in expected quantity, �E" (qi), is strictly increasing in " at " = 0 and it is independent of

forward transactions. Therefore, this deviation is pro�table even in the case where �rms

sell forwards.

Proof of lemma 2. This lemma states that if both �rms are o¤ering strictly positive

quantity in equilibrium and the spot price is below the price cap, equilibrium supply func-

tions are strictly increasing when �rms have sold forward. Besides a minor change on the

lower bound for the gains in terms of prices to allow �rms to sell forward, this proof follows

step by step Aromí�s proof of its lemma 2.

When �rms did not trade ahead of the spot market, if �rm i o¤ers the same quantity for

p 2
�
p; p
�
there are two possible cases. If �rm j is o¤ering additional units for that range of

prices, then �rm j can increase its expected pro�ts by withholding supply for that range of

prices. If no �rm o¤ers additional units for that range of prices, �rm i can withhold supply

at every p 2
�
p� "; p

�
; and increase its expected pro�ts.

For example, �rm i can deviate to:

bs"i (p) =
8>>>><>>>>:
si
�
p� "

�
if p 2

�
p� "; p

�
�
si
�
p� "

�
; si
�
p
��

if p = p

si (p) otherwise

(A.4)
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The losses in terms of quantities are bounded above by:


" < p
�
si
�
p
�
� si

�
p� "

�� �
F
�
si
�
p
�
+ sj

�
p
��
� F

�
si
�
p� "

�
+ sj

�
p� "

���
(A.5)

Moreover, the upper bound converge to zero as " converges to zero and its derivative is also

zero at " = 0. Now the gains in terms of prices are bounded below by:

�" >
�
p� p

� �
si
�
p� "

�
� hi

� �
F
�
si
�
p
�
+ sj

�
p
��
� F

�
si
�
p
�
+ sj

�
p� "

���
(A.6)

The lower bound is strictly increasing in " at " = 0, even after �rms sold forward.

Proof of lemma 3. Let�s de�ne s�i (p) as �rm i�s equilibrium supply function, and

remember that p (x) is the equilibrium price as a function of demand. Therefore, s�i (p (x)) =

min
n
x� s�j (p (x)) ; ki

o
, with i 6= j, represents the quantity �rm i supplies in equilibrium

when demand is x. Now, if s�i (p) and s
�
j (p) are continuous and strictly increasing (p > p0)

equation (4) or (5) and s�j (p) de�ne s
�
i (p) : It is easy to see that when x � s�j (p (x)) = hi,

the only price that satisfy the FOCs is p (x) = ci (hi) :

Now for p < p0 at least one �rm is o¤ering zero quantity in equilibrium. Hence, there are

two possible cases s�i (p0) = 0, which implies s
�
i (p) = 0 for all p < p0; and s

�
i (p0) > 0, which

means �rm i�s residual demand equals the min fx; kig and therefore it is inelastic at every

p < p0: If p0 < ci (hi), then s�i (p0) < hi: When 0 < x < s
�
i (p0), �rm i�s residual demand is

lower than the quantity hedged by its forward sales and it is inelastic, hence @�hi (x)
@p < 0 at

every p < p0 and for every 0 < x < s�i (p0), where �
h
i (x) is �rm i�s ex-post pro�t. Therefore,

p (x) = 0 8x < s�i (p0); which means, s�i (p) = s�i (p0) 8p < p0:

When ci (hi) � p0; and x < hi;
@�hi (x)
@p < 0 at every p < ci (hi), for the same reasons

explained above, then p (x) = 0. However, when hi < x < s�i (p0), �rm i�s residual demand

is higher than its contract holdings and also inelastic at any price below p0; hence
@�hi (x)
@p > 0

for all prices in that range, and p (x) = p0. Therefore, s�i (p) = hi 8p < p0:

Equilibrium supply functions. Let�s de�ne bsi (p) = si (p)� hi 8i, then bs0i (p) = s0i (p).
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When marginal costs are constant and symmetric, equations (4) and (5) become:

bs02 (p (x)) = bs1 (p (x))p (x)� c (A.7)

bs01 (p (x)) = bs2 (p (x))p (x)� c (A.8)

If bs�i (p) represents the solution to the previous system, then bs�01 (p) = bs�02 (p) 8p. Let�s assume
without lost of generality that bs�01 (p) > bs�02 (p) 8p. Since we know that bs�1 (c) = bs�2 (c) = 0,
the previous inequality implies bs�1 (p) > bs�2 (p) 8p > c. However, this contradicts equations
(A:7) and (A:8) since bs�01 (p) > bs�02 (p) , bs�1 (p) < bs�2 (p) 8p > c. Therefore, bs�01 (p) = bs�02 (p)
and bs�1 (p) = bs�2 (p) 8p.
Now, the solution to the di¤erential equation bs0 (p) = bs(p)

p�c is bs (p) = � (p� c). Since

bsi (p) = si (p)� hi 8i; si (p) = hi � �c+ �p, which can be written as si (p) = �i + �p, with
�i = hi � �c.

We know that lim
p!p

si (p) � ki 8i, hence � (p� c) � max f0; ki � hig 8i. Moreover, at least the

supply function for one of the �rms is continuous at the price cap in equilibrium. Therefore,

� = kam
p�c where kam = min fka1; ka2g, and kai = max f0; ki � hig.

Proof of theorem 1. Equilibrium spot pro�ts depend on the demand realization, the

forward positions and installed capacities. There are six di¤erent cases for the expected

pro�ts depending on the pair of forward sales.

Case (a) kai � kaj , hi � �c and hi � hj ) S = hj � hi, S = 2kj � hj + hi

@�ai
@hi

= � hi
2�

Z S

S
dF (x) (A.9)

@�ai
@hi

is strictly negative unless hi = 0, when it becomes zero.
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Case (b) kai � kaj , hi > hj and hj � �c) S = hi � hj , S = 2kj � hj + hi

@�bi
@hi

= �f (S) p0S �
hi
2�

Z S

S
dF (x) (A.10)

@�bi
@hi

is also strictly negative unless hi = hj = 0.

Case (c) kai � kaj , hi > �c and hj > �c) S = �i+�j = hi+hj �2�c, S = 2kj �hj +hi

@�ci
@hi

= � c�j

(�1 + �2)
2

Z S

0
xdF (x)� hi

2�

Z S

S
dF (x) (A.11)

In this case @�ci
@hi

< 0, since �j = hj � �c and this is strictly positive by assumption.

Case (d) kai < kaj , hi � �c and hi � hj ) S = hj�hi, S = K�(kaj � kai) = 2ki�hi+hj

@�di
@hi

= � hi
2�

Z S

S
dF (x) +

1

4�

Z S

S

(x� hj)2 � h2i
ki � hi

dF (x) (A.12)

Case (e) kai < kaj , hi > hj and hj � �c) S = hi � hj , S = 2ki � hi + hj

@�ei
@hi

= �cSf (S)� hi
2�

Z S

S
dF (x) +

1

4�

Z S

S

(x� hj)2 � h2i
ki � hi

dF (x) (A.13)

Case (f) kai < kaj , hi > �c and hj > �c) S = �i+�j = hi+hj � 2�c, S = 2ki�hi+hj

@�fi
@hi

=
�cphj + c2ki
(p� c)S2

Z S

0
xdF (x)� hi

2�

Z S

S
dF (x) (A.14)

+
1

4�

Z S

S

(x� hj)2 � h2i
ki � hi

dF (x)

De�ne �i (hj) = ki � kj + hj as the value of hi such that kai = kaj . The derivative of

�i (hi; hj) with respect to hi does not exists at hi = �i (hj), since lim
hi!�i(hj)�

@�i(hi;hj)
@hi

<

lim
hi!�i(hj)+

@�i(hi;hj)
@hi

. When �rm i is the relatively less aggressive �rm (kai > kaj), the opti-

mal choice for �rm i is to stay out of the forward market at date 0, as (A:9), (A:10) and
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(A:11) are strictly negative at every hi 2 (0; �i (hj)) and zero at hi = 0.

Let�s assume (h�1; h
�
2) � 0 is the equilibrium of the forward market. Since @�i(hi;hj)

@hi
< 0

8hj as long as 0 < hi < �i (hj), if �rm 1 sells a strictly positive amount at date 0, it has

to be that h�1 > �1 (h
�
2) = k1 � k2 + h�2, which is the same as h�2 < k2 � k1 + h�1. But this

contradicts the assumption that h�2 > 0, because this assumption implies h
�
2 > k2� k1+h�1.

Therefore, (h�1; h
�
2)� 0 can not be an equilibrium.

Let�s assume without lost of generality that k1 > k2. Now, �1 (h2) > 0 8h2, which means

there is always an h1 at which �rm 1 will be the less aggressive �rm. Therefore,
@�1(0;h2)
@h1

= 0

8h2, since when �rm 1 does not sell forwards it is always the less aggressive �rm (ka1 > ka2).

In addition, �2 (0) < 0, hence, �rm 2 is the most aggressive at h =(0; 0) and @�d2(0;0)
@h2

=

1
4�

R S
S
x2

k2
dF (x) > 0. Therefore, no �rm selling forwards at date 0 is not an equilibrium. If

k1 = k2, both �rms will have the incentive to sell forwards when its competitor does not

sell.

If hi tends to ki, the relevant cases to focus on are: (c) when hj = kj , (e) when hj = 0,

and (f) when 0 < hj < kj . In the three cases the lim
hi!k(�)i

@�i(hi;hj)
@hi

< 0, as long as c > 0.

Also, @�i(hi;hj)@hi
= 0 when hi > ki, because selling more than its capacity does not have any

impact on the spot market, �rm i is already o¤ering every unit at a price of zero and it can

not be more aggressive than that. Hence, no �rm hedges its entire capacity.

Therefore, in every possible pure-strategy equilibrium of the forward market, only one �rm

sells forward, but less than its installed capacity.

Proof of theorem 2. Theorem 1 showed the only possible equilibria are those where

0 < h�i < ki and h�j = 0. This proof will be divided in two parts. First, it will be shown

that h�i =
2(p�c)
2p+c ki is the best response to h

�
j = 0. Then, it will be shown that h

�
j = 0 is the

best response to h�i =
2(p�c)
2p+c ki.

If ki � kj and hj = 0, kai is certainly smaller than kaj ; then �i (hi; 0) is a continuously

di¤erentiable function for all hi in (0; ki). This corresponds to case (e) in the proof of
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theorem 1, hence h�i is de�ned by:

�cSf (S)� hi
2�

Z S

S
dF (x) +

1

4�

Z S

S

(x)2 � h2i
ki � hi

dF (x) = 0 (A.15)

where the left hand side is @�ei
@hi

from equation (A:13). If x � U [0;M ], then the F:O:C:

becomes:

�2p+ c
3

hi +
2

3
(p� c) ki = 0 (A.16)

and,

h�i =
2 (p� c)
2p+ c

ki (A.17)

When ki > kj and hj = 0, kai can be either smaller or larger than kaj . Therefore, �i (hi; 0)

is not continuously di¤erentiable. If hi = 0, it is case (a) in the proof of theorem 1;

�i (hi; 0) = �
a
i (hi; 0). When hi 2 (0; �i (0)), it is case (b), �i (hi; 0) = �bi (hi; 0); while if

hi 2 (�i (0) ; ki), it is case (e), with �i (hi; 0) = �ei (hi; 0). Clearly, �
a
i (0; 0) > �bi (hi; 0).

Therefore, for h�i =
2(p�c)
2p+c ki to be �rm i�s best response to hj = 0; it has to be that

max
hi
�ei (hi; 0) is not smaller than �

a
i (0; 0). Since ki > kj , then:

�ai (0; 0) =
(p� c)
M

" 
k2i
2
+
k2j
6

!
+ (M � ki � kj) ki

#
(A.18)

and

�ei (h
�
i ; 0) = �

ch�i
2M

� (p� c)
M

�
(ki � h�i )

3
� kikj � (M � ki � kj) ki

�
(A.19)

Now, subtracting both expressions, we have:

�ei (h
�
i ; 0)��ai (0; 0) = �

(p� c)
M

" 
k2i
2
+
k2j
6

!
� kikj +

(ki � h�i )
3

#
� ch�i
2M

(A.20)

plugging h�i , de�ning ki = kj + , and arranging terms:

�ei (h
�
i ; 0)��ai (0; 0) =

2p+ 3c

2 (2p+ c)M

�
�2 � 

�
4ckj
2p+ 3c

�
+
4

3
k2j

�
p� c
2p+ 3c

��
(A.21)
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Replacing c by �p, (A:21) becomes:

�ei (h
�
i ; 0)��ai (0; 0) =

2 + 3�

2 (2 + �)M

�
�2 � 

�
4�kj
2 + 3�

�
+
4

3
k2j

�
1� �
2 + 3�

��
(A.22)

De�ne b as the value of  such that �ai (0; 0)��ei (h�i ; 0) = 0. Hence, h�i = 2(p�c)
2p+c ki can be

�rm i�s best response to hj = 0 only if ki� kj � b. Now, for h�i to be �rm i�s best response

to hj = 0, h�i has to be an interior solution, h
�
i 2 (�i (0) ; ki), where �i (0) = ki � kj . If

 were equal to h�i , it can be shown that equation (A:21) would be negative. Therefore,b is smaller than h�i ; which means h�i is �rm i�s best response to hj = 0; if ki � kj � b.
Consequently, if k1 > k2 and k1 � k2 > b, there is no equilibrium where the large �rm 1

sells forward.

The next step is to �nd conditions for hj = 0 to be �rm j�s best response to h�i . When

kai < kaj , hj = 0 is the optimal choice for �rm j, since @�j(hi;hj)
@hj

���
kai<kaj

< 0 for all hj > 0

and @�j(hi;0)
@hj

���
kai<kaj

= 0. The expected pro�t function is not di¤erentiable, but continuous

at �j (h�i ); and it is also concave for hj in (0; �j (h
�
i )) and hj in (�j (h

�
i ) ; kj). Hence, if the

lim
hj!�j(h�i )

+

@�j(h�i ;hj)
@hj

is non-positive for cases (d), (e) and (f), then hj = 0 is �rm j�s best

response to h�i .

lim
hj!�j(h�i )

+

@�dj (h
�
i ; hj)

@hj
=

p� c
M

kj

 
1� (2p+ c)

2

27c2
k2j
k2i

!

lim
hj!�j(h�i )

+

@�ej (h
�
i ; hj)

@hj
= �

 
c+

4 (p� c)3

9c2

!
kj +

 
c+

16 (p� c)4

27 (2p+ c) c2
+
2c (p� c)
2p+ c

!
ki

lim
hj!�j(h�i )

+

@�fj (h
�
i ; hj)

@hj
=

�
c (p� c)
2p+ c

+
3c3 (p� c) + 2c4

(2p+ c) (p� c)2

�
ki �

�
c+

c2

2 (p� c)

�
kj

De�ne c = �p, where � 2 (0; 1). Now, the conditions for the lim
hj!�j(h�i )

+

@�j(h�i ;hj)
@hj

to be
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non-positive can be expressed as follows:

(2 + �)

33=2�
� ki

kj�
9�3 + 4 (1� �)3

�
(2 + �)

36�3 � 9�4 + 16
3 (1� �)

4 � ki
kj�

4� �2
�
(1� �) �

2
�
� � �2 + 2�3

� � ki
kj

Where the three conditions are for cases (d), (e) and (f) respectively. For example, if the

installed capacities are symmetric, these conditions will be satis�ed for any � approximately

smaller than 0:48.

Proof of theorem 3. Let�s assume without loss of generality that k1 � k2. When

x � U [0;M ], �a1 (0; 0) is given by equation (A:18) and

�a2 (0; 0) =
(p� c)
M

��
k1k2 �

k22
3

�
+ (M � k1 � k2) k2

�
(A.23)

There are two possible equilibria,
�
2(p�c)
2p+c k1; 0

�
and

�
0; 2(p�c)2p+c k2

�
. Let�s start with the

second equilibrium, the one where the small �rm 2 takes a short forward position. The

expected pro�ts for both �rms are the following:

�a1 (0; h
�
2) =

(p� c)
M

�
k22 + h

�2
2

6
� k2h

�
2

3
+
k21
2
+ (M � k1 � k2) k1

�
(A.24)

�e2 (0; h
�
2) = �

ch�22
2
+
(p� c)
M

"
k1k2 �

(k2 � h�2)
2

3
+ (M � k1 � k2) k2

#
(A.25)

De�ning �T (0; 0) = �a1 (0; 0) + �
a
2 (0; 0) and �T (0; h

�
2) = �

a
1 (0; h

�
2) + �

e
2 (0; h

�
2), replacing

h�2 and subtracting, we have

�T (0; h
�
2)��T (0; 0) =

2

3

(p� c)3

(2p+ c)2
k22
M

(A.26)

which is strictly positive for all p > c. Since the expected gains from trade are constant,
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the expected consumer surplus decreases when there is strategic forward trading and the

small �rm takes a short position.

When the large �rm is the one selling forward in equilibrium, the expected pro�ts are the

following:

�e1 (h
�
1; 0) = �

ch�21
2M

+
(p� c)
M

"
k1k2 �

(k1 � h�1)
2

3
+ (M � k1 � k2) k1

#
(A.27)

�a2 (h
�
1; 0) =

(p� c)
M

�
k21 + h

�2
1

6
� k1h

�
1

3
+
k22
2
+ (M � k1 � k2) k2

�
(A.28)

De�ning �T (h�1; 0) = �
e
1 (h

�
1; 0) + �

a
2 (h

�
1; 0), we have

�T (h
�
1; 0)��T (0; 0) =

2

3

(p� c)
M

�
k22 �

3p (p+ 2c)

(2p+ c)2
k21

�
(A.29)

Rearranging and replacing k1 by k2 + , we obtain

�T (h
�
1; 0)��T (0; 0) =

�2p (p� c) (p+ 2c)
(2p+ c)2M

"
2 + (2k2)  �

(p� c)2

3p (p+ 2c)
k22

#
(A.30)

Replacing c by �p, (A:30) becomes:

�T (h
�
1; 0)��T (0; 0) =

�2 (1� �) (1 + 2�)
(2 + �)2M

"
2 + (2k2)  �

(1� �)2

3 (1 + 2�)
k22

#
(A.31)

Let�s de�ne e as the value of  such that strategic forward trading does not impact aggregate
expected pro�ts. When k1 � k2 = e, the extra expected pro�ts enjoyed by �rm 1 exactly

o¤set the loss experienced by �rm 2. As it can be seen from equations (A:22) and (A:31),

e is smaller than ̂. Hence, when the equilibrium where the large �rm sells forward does

exist, the e¤ect of strategic forward trading on expected aggregate pro�ts and therefore, on

expected consumer surplus, depends on the asymmetry between �rms. When the di¤erence

between k1 and k2 is smaller than e, consumers are worse o¤, however, when k1�k2 2 (e; ̂]
consumers and the large �rm are better o¤ at the expense of the small �rm.
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