Quantifying Security of Supply

Christian Winzer,
Electricity Policy Research Group, University of Cambridge, E-mail: cw420@cam.ac.uk

1 Summary

Security of Supply is considered as one of the key objectives of European Energy Policy besides Climate Change and Economic Efficiency. Yet there are only few studies which attempt to quantify the term.

In addition, quantitative studies are split between authors that look at technical risk and more recently also intermittency risks, usually using probabilistic models, and those focusing on risks caused by human actors, mostly using non-probabilistic approaches.

While there are models in both groups that produce a useful output metric, there is a lack of models that analyse the combined impact of natural, technical and political risk sources with a focus on possible interactions. In our paper we aim to bridge this gap. We propose a framework that measures the economic value of energy security by linking the output of existing strategic models with a new model of disruption risk, which analyses the combined impact of natural, technical and human risk sources taking into account possible interdependencies between them. The goal of this research is to answer the following questions:

- **What is the security level provided by different infrastructure options?**

Countries must decide between different portfolios of energy supply infrastructure. In order to take this decision properly, a cost-benefit analysis of the available options is required. While
costs are usually well defined, there is a lack of frameworks which quantify the monetary value of security levels taking into account political, as well as technical and natural risk sources.

- **Which is the economically efficient security level?**

The infrastructure option with the highest security level does not necessarily have to be the most efficient solution. By integrating estimates of equilibrium prices and quantities with measures of disruption risk we can construct a cost curve of security of supply which allows us to prioritise different options.

- **What is the relative importance of each risk source for the security of electricity supplies?**

The relative impact of different risk sources on results is an important determinant for the allocation of resources. In research, the importance of a risk source will influence the time and computation power that is spent on an adequate representation within models. In politics and industry, the importance of a risk source will influence the resources that are spent on decreasing the vulnerability of infrastructure to its impacts.

We show the model results for a hypothetical test case to illustrate the possible benefits from applying the framework.

2 **Introduction**

During the past decades the energy sector in Europe has seen a number of developments that had an impact on the security and reliability of energy supplies.

Firstly the introduction of *privatization* led to significant changes in the electricity and gas sector. On the positive side, competition between suppliers has led to falling energy prices. However, the failure of markets subsequent to privatization is also seen as a cause for
systematic underinvestment in generation capacity, which threatens the ability of the system to meet peak demand levels [1,2].

Secondly the occurrence of several interruptions of gas deliveries from Russia raised the perception of human risk factors in Europe. The political relations between export, transit and import regions are increasingly seen as a major source of risk to the security of supplies. This strong perception of political risk will probably also influence the European attitude towards imports from other countries. As the depletion of indigenous gas and oil resources is leading to rising dependency on a few, politically unstable regions, the importance of political risk is likely to continue for some time into the future.

Thirdly climate change concerns will lead to an increasing use of renewable energy sources. On the one hand this introduces a new type of risk to the security of supplies due to the intermittent availability of primary energy sources such as wind and solar radiation. On the other hand the unequal spread of renewable potentials between different geographical regions will make imports from other countries both within and outside the European Union increasingly attractive. This would again increase the importance of political risk for the security of supplies.

A good illustration for these topics can be seen in the current debate about renewable electricity imports from North Africa. The idea behind this is to build solar-thermal power plants and wind-turbines in the deserts of North African countries, where land is very cheap and sunlight and wind are available in abundance. The electricity could then be imported to Europe through High-Voltage-Direct-Current (HVDC) cables, which would keep the transmission losses very low. It is estimated that at current cost levels electricity generated from such plants could
be available in Europe at a cost significantly below current feed-in tariff levels\(^1\). Cost parity with conventional sources is expected to be reachable during the next 10-15 years. The main challenges for those plans will be the political stability of export countries, the natural fluctuations of the resource availability and the ability to cover their rising electricity demand in export countries through this or other projects at locally acceptable cost levels. The project viability has been indicated in a number of studies as early as 2006 [3-6]. However, progress in this area has been rather slow. A first step into this direction was taken in the form of the Mediterranean Union in 2008. The most recent EU directive announced the possibility for member states to count renewable electricity imports from non-member countries towards meeting their target[7]. Following this, a consortium of private companies has been set up. The aim of the 400 billion EUR ‘Desertec Industrial Initiative’ (DII) is to cover as much as 25% of Europe’s electricity demand in 2050 with renewable electricity imports from Middle-East and North-African (MENA) countries. The first pilot projects will probably not have a strong impact on the security of European energy supplies. However, in view of the clear interest of private stakeholders to import substantial amounts of electricity from countries outside the EU, it is important to assess the impact of such imports on the security of electricity supplies.

In order to answer this question there is a clear need for an analytical framework that combines the assessment of natural, technological and human risk sources into a single number. The framework would have to fulfill three core requirements.

\(^1\) Industry communication, referring to feed-in tariffs of €0.27 / kWh for solar electricity and €0.072 / kWh for wind electricity in Spain.
Firstly, the framework would have to model interdependencies that could arise between the impacts of those risk sources on different streams. Dependencies can occur between the impacts of the same risk source on different streams. An example of this would be the wind speeds at different locations, which might show a significant degree of correlation. In addition to that, dependencies could also occur between the impacts of different risk sources on either the same or on different streams. An example for the first case would be the correlation between the availability of wind turbines and the risk of transmission line failure which both increase in case of high wind-speeds. An example for the latter case could be an increasing risk of opportunistic behavior by an export or transit country if the shortfall caused by interrupting their share of supplies is larger than the current reserve margin of the import country.

Secondly, the framework has to produce a useful output metric. Since the cost associated with infrastructure investments is expressed in monetary units, the output of the model should express the benefit of the infrastructure in terms of cost savings caused to society over the lifetime of the project.

Thirdly, a framework that combines the analysis of clearly defined and well quantified technological risks with an assessment of highly complex and difficult to quantify political risks has to take into account the different degrees of uncertainty associated with each of the risk sources.

The need for such a framework has been acknowledged in several publications in the past [8-11] and is warranted by an ongoing trend to produce quantitative measures for the security of energy supplies.

In section 3 we will give a brief overview of the relevant existing literature. After that we will explain the methodology used in our framework in section 4 and illustrate it with a stylized
representation of a simple network consisting of five nodes in section 0. Based on the results described in section 6 we will then draw a number of preliminary conclusions in section 7.

3 Literature Review:

Articles about security of supply are very heterogeneous in nature and include everything from qualitative political accounts to economic bargaining frameworks and engineering models of system reliability\(^2\). In our review we will describe the most commonly used security of supply definitions and then give an overview of typical quantitative measures. Since we don’t have enough space to describe all security of supply definitions and measures in detail will discuss them in groups.

3.1 Security of Supply Definitions

A first group of authors define security in terms of the ability of a system to meet demand without interruptions.

"Secure energy means that the risks of interruption to energy supply, are low" [12]

This definition is reflected in the use of measures like the expected energy unserved or loss-of-energy-expected which is widely used in reliability analysis [13]. While this measure can well be

\(^{2}\) As mentioned in the introduction, it is very interesting to observe the divide in literature which is also apparent in the wording: while articles measuring the unavailability of energy due to political or extreme weather events usually talk about “security”, articles measuring the unavailability of energy due to technical defaults describe a similar concept as “reliability”. We therefore consider the technical reliability literature to be part of security of supply studies.
quantified, this definition does not include criteria for determining which security level is appropriate.

A second group of authors try to achieve this by introducing price levels into the definition. The most prominent of these definitions is the one given by the International Energy Agency:

“Energy security is defined in terms of the physical availability of supplies to satisfy demand at a given price.” [14].

References to this definition or variations thereof can be found in [15-23]. Additional aspects such as environmental and sustainability dimensions or social acceptability are included into the definition by ([24], [15]). While price levels provide a means to distinguish between appropriate and inappropriate security levels, the distinction in terms of ‘reasonable’ prices is very subjective and the consideration of additional aspects makes it even more difficult to operationalize the term.

A third group of authors therefore use the welfare concept in order to specify the appropriateness of security levels within the definition. The most prominent definition in this context is the one given in Bohi and Toman [25] which is also cited by [26] and [27]:

“Energy insecurity can be defined as the loss of welfare that may occur as a result of a change in the price or availability of energy” [25]

The idea of defining security in terms of indirect effects is also shared by [28] and [29] who define security of supply in terms of the availability of the services for which energy is used.
3.2 Security of Supply Measures

A *first* group of approaches produce a *dimensionless rating*. A typical example for this category is the price index ESI_{Price} proposed by the International Energy Agency in [30]. The price index ESI_{Price} is calculated by adjusting the Herfindahl-Index of market concentration for each primary energy market by a political risk rating of the export countries. Similar approaches building mostly on the Herfindahl-Index with or without an adjustment for political risk can be found in [31,32,26,33]. Indices including other aspects such as the adequacy and reliability of infrastructure can be found in [22] and [16]. While these indices provide information about the comparative security of supply levels of different countries, they do not quantify the value of security levels in monetary units.

A *second* group of models uses *volatility measures*, typically in connection with portfolio theory. Authors such as [34-37] use the volatility of the electricity generation cost, import prices or import quantities as a measure for the risk of different primary energy source and calculated variance minimal portfolios based on the correlations between those variables. However, the volatility is a very imprecise measure of disruption risk and therefore less well suited for the calculation of welfare losses. Markowitz portfolio theory is also likely to yield wrong results if the normality assumption is violated for some of the risks.

A *third* group of authors produce a measure for *disruption probabilities*. For example [38] suggests the calculation of reliability indices based on the historical frequency of disruption events and [39] uses influence diagrams to quantify the risk of political supply interruptions. There is also a large number of system reliability models that calculate measures such as the estimated energy unserved based on probabilistic models (for an overview see [13]). The output measures produced by those models are well suited for the ranking of infrastructure portfolios.
However, one of the main shortcomings in view of the trends described in section 2 is that the authors usually exclude either human or natural and technological risk sources from their analysis. The approach used by [38] is the only one that includes the frequency of interruptions caused by all three risk sources. Since the model only captures the overall default frequency, without discriminating between risk sources, it is however less suitable for estimating the impact of new infrastructure on disruption risk.

A fourth group of authors measures the security of supply using strategic models that predict expected prices, quantities and sometimes capacity investments in the market. Examples for this can be found in [40,41], which derive Cournot models of competition in gas markets. A different approach is taken in [42], where a coalitional bargaining model with externalities is used, to analyse which supplier coalitions are likely to evolve and how those coalitions influence the likelihood of future investment patterns. While the equilibrium prices and quantities resulting from these models are a good measure for the welfare loss caused by strategic behaviour, they do not address the damage caused by supply disruptions.

4 Methodology

4.1 Security of Supply Definition

For the purpose of our study we follow [43] in defining security of supplies as the expected energy unserved. In order to determine the optimal level of security we must compare the expected cost of supply disruptions to the cost of preventing expected disruptions. The optimal security level resulting from these calculations will be equal to the welfare maximising solution. The difference between the definition of insecurity in terms of unserved energy and the welfare definition is that it measures the absolute damage from interruptions and not only the
avoidable part of the damage after subtracting the cost of the insurance. The cost of avoiding damages is not part of the definition itself but rather used as an external determinant to find the optimal level of security.

4.2 Risk Measure

Our approach for quantifying disruption risk follows the idea of [39] to use conditional probabilities of events but extends it to include technological and natural risk sources. Our basic assumption is that nature is the prime-mover in the system, technological availability is influenced by the state of nature, and political availability is influenced by the combined system state resulting from natural and technical risk sources.

We describe the state of nature through variables such as the rainfall, wind-speed, temperature, solar irradiation and demand for each of the relevant geographical areas. In order to construct a state space, we discretize the variables with an appropriate resolution. Each of the possible combinations of variable values describes a state of nature which is associated with an exogenously given probability.

Technological risk is modelled through the conditional default probability for each system component. Where it is possible we aggregate the availability of several components into a single module. The technical default probability for each module can depend on one or more of the variables composing the state of nature. The idea behind this is that the availability of technical equipment is influenced by environmental conditions. For example, storms may cause trees to fall into power lines, or high temperatures may cause a shortage of cooling water for conventional power plants. Given a state of nature, the default probabilities for each component are mutually independent.
Political risk is modelled as the conditional default probability for each exporter/transit country combination dependent on the reserve margin of the import country that would be caused by a supply interruption. The idea behind this is that deliberate cuts of the supplies to an importing country are more attractive, if the exporter or transit country can cause the reserve margin in the import country to drop below a critical level. Given the reserve margin caused by an interruption, the default probabilities of each supplier are known.

The dependency between the risk sources is be visualised in the influence diagram in

![Influence Diagram](image)

Figure 1: Dependencies between risk sources.

In theory the expected energy unserved (EEU) can be calculated by summing up over the tree of possible combinatorial system states and the associated probabilities. Using the variable names in Table 1 the mathematical notation for this is given in equation (1) below.

\[
EEU = \sum_{\mu_1=1}^{M_E} \sum_{\mu_2=1}^{M_T} \sum_{\mu_3=1}^{M_H} \Pr(S^E_{\mu_1}) \cdot \Pr(S^T_{\mu_2} \mid S^E_{\mu_1}) \cdot \Pr(S^H_{\mu_3} \mid S^E_{\mu_1}, S^T_{\mu_1}) \\
\times \min\left[\sum_{v=1}^{N_R} q_v \cdot r^{ETH}(S^E_{\mu_1}, S^T_{\mu_2}, S^H_{\mu_3})_v, 0\right]
\]
If we are only interested in the impact of natural and technological risk sources, we can use the simplified formula in equation (2) instead, which does not include the impact of human risk sources. The special case where the probability of a technical system state is the same for all natural system states corresponds to the information captured by traditional reliability models and will be used as a benchmark later on.

\[
EEU = \sum_{\mu_1=1}^{M_E} \sum_{\mu_2=1}^{M_T} \Pr(S^E_{\mu_1}) \cdot \Pr(S^T_{\mu_2}|S^E_{\mu_1}) \cdot \operatorname{Min}[\sum_{v=1}^{N_T} q_v \cdot r^{ET}(S^E_{\mu_1}, S^T_{\mu_2}, v, 0)]
\]

Table 1: List of variables.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>index of a variable within an array</td>
</tr>
<tr>
<td>(\mu)</td>
<td>index for the number of a system state</td>
</tr>
</tbody>
</table>

\(S=(S^E, S^T, S^H)\) Total system state

\(S^E=(S^E_1, \ldots, S^E_{NE})\) Exogenous, natural system state, components \(S^E_\nu\) measured in \([m/s], [^\circ C]\) etc.

\(S^T=(S^T_1, \ldots, S^T_{NT})\) Technical system state, \(S^T_\nu \in [0,1]\)

\(S^H=(S^H_1, \ldots, S^H_{NH})\) Human system state, \(S^H_\nu \in [0,1]\)

\(r^E(S^E) = (r^E_1, \ldots, r^E_{NE})\) Primary availability of each energy supply source resulting from a natural system state, \(r^E_\nu \in [0,1]\)
$$r^{ET}(S^E, S^T) = (r_{ET 1}^{ET}, \ldots, r_{ET N_r}^{ET})$$

Primary availability of each energy supply source resulting from the natural and technical system state, $r_{ET}^{ET} \in [0,1]$

$$r^{ETH}(S^E, S^T, S^H) = (r_{ETH 1}^{ETH}, \ldots, r_{ETH N_r}^{ETH})$$

Primary availability of each energy supply source resulting from a natural, technical and human system state, $r_{ETH}^{ETH} \in [0,1]$

$$C = (C_1, \ldots, C_{NT})$$

Maximum capacity of each technical component, C_v capacity in [MW]

$$q = (q_1, \ldots, q_{N_r})$$

Maximum capacity of each supply or demand source relative to the total maximum supply capacity, $q_v = \frac{C_v}{\sum_{v \in P = \text{energy supply source}} C_v}$

N_r Number of energy supply or demand sources considered in the system

N_E Number of variables composing a natural system state

N_T Number of technical components in the system

N_H Number of human risk sources considered in the system

M_E Number of natural system states

M_T Number of technical system states

M_H Number of human system states

In practice the exponential growth of possible system states with respect to the number of supply/demand sources, environmental variables, technical components and human risk
sources is likely to make the approximation of results through Monte-Carlo simulation more efficient.

Based on the distribution of end-use energy at demand sites compared to demand levels the EEU can be calculated.

As mentioned earlier, the different parts of this model exhibit highly different degrees of uncertainty. While the parameters describing technological and natural risk will be reasonably well known, political default risk is very difficult to quantify to the extent that it is sometimes questioned whether a quantification is possible at all [44] and value of lost load estimations also typically show strong variations [45-47].

According to the taxonomy introduced by Walker (2005) in [48] uncertainty can be categorized by its location in the modelling process, the level of uncertainty and its nature. Similar distinctions can be found in other publications [49]. The location of uncertainty could be the valuation of model outcomes, model parameters, model structure, or the model context. The uncertainty levels that are distinguished are statistical uncertainty, scenario uncertainty, recognised ignorance and complete ignorance. The nature of any of these uncertainties can either be epistemic, i.e. a lack of knowledge about otherwise well determined outcomes, or variability uncertainty, i.e. an inherent indeterminacy of the outcomes even in case of perfect information.

In case of uncertainties about model outcomes, parameters and structure that do not exceed the level of scenario uncertainty we can apply the tools of Bayesian statistics in order to capture these uncertainties within the model. A widely used technique in this context is the one of model averaging [49,50], where a tree of all possible combinations of models, parameters, outcome states and outcome values is constructed. This is visualized in Figure 2 for the
simplified case of having to decide between just two alternative model structures, two parameter sets for each structure, two outcome events and two evaluations for each outcome event.

Figure 2: Capturing uncertainty about model structure, parameters and outcome evaluation.

The probability of each outcome evaluation node is the result of summing up the product of probabilities along each path leading back to the root of the tree.

Much of the literature in the field has been devoted to the determination of optimal probability weights w_i for each sub-tree. The basic techniques which can be distinguished are the assignment of equal weights – the so-called ignorance prior, which can be used in the case of scenario uncertainty, the assignment of weights according to the number of people or observations supporting a branch, or the assignment of weights according to the performance achieved by the forecasts using the respective model branch.

In this paper we limit our model to the hypothetical situation of perfect knowledge about the structure, parameters and outcome valuations. In future versions we plan to extend this by

3 For an overview of expert aggregation techniques see [51] and [52].
using the above mentioned averaging techniques to cover uncertainty about the structure, the parameters and the outcome value caused by security of supply risks inside the model.

4.3 Efficiency Measure

In order to determine the efficient level of security we will have to determine the cost of different infrastructure options. Cost estimates including the impact of market power can be obtained from strategic models such as [40,41].

If we divide the reduction in EEU by the increase in total system cost for each infrastructure extension, we obtain a measure for the cost per MWh EEU that could be prevented. Ranking infrastructure options by this value yields a curve that is similar to the CO2 abatement cost curve and allows the prioritization. An efficient security level would involve all the options with a cost per MWh EEU below the value of lost load. This corresponds to the welfare optimal solution marking the zero risk point according to the security of supply definition of Bohi and Toman.

Studies on the value of lost load indicate, that the cost of disruptions is strongly dependent on the timing, the duration and previous notice of the outage[46]. To include this in the model, we would have to simulate the probability, duration, size and predictability of outages and integrate over the monetary values of outages instead of assigning a monetary value to the average outage expectancy after integration. This is still an area for future research.
5 Trial System

A simplified representation of our trial system can be found in Figure 3.

Figure 3: The trial system.

As policy maker we want to see how much each of the following options enhances the security of electricity supplies compared to the original case:

1) Increase Gas from Russia by 0.5 GW
2) Increase Gas from X by 0.5 GW
3) Increase CSP from Algeria by 0.5 GW

We assume that technical default rates depend on the wind speeds as an indicator for stormy weather conditions and political default risk depends on the reserve margin in comparison to the export capacity. The conditional outage probabilities for individual components can be found in the appendix.

We evaluated the expected energy unserved for each of the three options using different versions of the probabilistic model described in the previous paragraph. In the first model version, A, we do not include political risk. This corresponds to the output of traditional reliability models. In model versions B and C we add political risk. Both versions use the same
average default rates. But while in model version B the defaults are independent of each other in version C defaults exhibit the dependency structure shown in Figure 1. Model versions D and E are the same as B and C but using higher political default probabilities. An overview of the versions is displayed in Table 2.

<table>
<thead>
<tr>
<th>Model Version</th>
<th>Natural Risk</th>
<th>Technical Risk</th>
<th>Political Risk BAU</th>
<th>Political Risk High</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 2: Probabilistic model versions.

At present we have not included cost measures in the analysis. This is an area for future research.

6 Results

To illustrate the advantage of probabilistic models we begin by comparing them to the result of commonly used concentration measures, such as the Shannon-Wiener Index, the Herfindahl-Hirschmann Index and the Herfindahl-Hirschmann Index adjusted by political risk ratings (see [30]). The normalized values of concentration measures are displayed in Figure 4.
Figure 4: Normalized results given by concentration measures.

In order to make indices comparable they have been normalized. For each index the option with the best score is assigned a value of 1 and the option with the worst score receives the value 0. All of the indices assign the best value to the option of increasing gas imports from Russia, whereas the option of increasing CSP imports from Algeria is unanimously assigned the worst value. These results are driven by the relative shares of each export country in the fuel mix. Because Russia has the lowest share, increasing Russian imports maximizes the index. In the same way, increasing imports from Algeria minimizes the index value because Algeria has the largest initial import share. Adjusting for political risk decreases the index values for imports from both Russia and Algeria. Since the other two cases are less affected by political risk, their relative score increases. One important shortcoming that can be seen from this graph is however, that an extension of the import capacity can lower the index value compared to the original case. This seems to be counterintuitive, because the capacity could simply be used as a backup option that would reduce the risk of interruptions.

The normalized results for the probabilistic model versions are displayed in Figure 5.
All of the model versions assign the worst value to the original case, whereas increasing gas imports from Russia is assigned the best value, with the exception of model version E. The main reason for the high index values for Russia is again its low share of the import capacity. In our calculations we assume, that the gas from each source comes through one pipeline. Different capacities can be achieved by increasing the diameter of the pipeline or installing more compressors. If we assume the risk of failure for pipelines of different capacities to be equal, the benefit of spreading this risk more equally outweighs the human risk associated with imports from Russia. The important point about this is not the assumption, whether or not additional pipelines have to be built to increase the capacity, but rather the fact that with the given default probabilities, the impact of human risk on the results is marginal, compared to the influence of technological risk. This can also be seen in the close match between the results of model A, which does not include political risk, and models B and C, which both include business as usual estimates for political risk. The impact of political risk on results can only be seen in model versions D and E where we assumed higher than usual default rates. The expected values for the expected unserved energy from Russia and Algeria in that case increase the relative attractiveness of local gas production. Subject to our parameter assumptions, the probabilistic approach
therefore seems to indicate, that the importance of political risk is not derived from historical default probabilities, but rather by the uncertainty about correct parameter values, which means that significantly higher default probabilities could occur with a non-negligible probability.

A large benefit of the probabilistic approach is that similar to technical reliability models they also estimate the absolute value of the expected energy unserved. This is displayed in Figure 6.

Figure 6: Expected energy unserved estimated by probabilistic models.

If we multiply the expected energy unserved with value of lost load values, we obtain an estimate for the economic benefit that could be obtained from each option. By comparing these benefits to the cost at which an option can be achieved, it is possible to evaluate the economic efficiency of each of the options and thus optimize the investment strategy.

In order to test the sensitivity of results to parameter assumptions, we have also varied the pipeline risk and the stream capacities. The output values are displayed in Figure 7 in the appendix and are in line with the results described in this paragraph.
7 Preliminary Conclusions

In our stylised example we analysed the impact of increasing gas imports from Russia, local gas production or imports of concentrated solar power from Algeria. The results indicate that there could be substantial benefits from using probabilistic models of disruption risks instead of the commonly used concentration measures.

Concentration measures fail to put the supply capacity in relation to demand. They do further not capture interdependencies between disruption risks and do not produce an output metric that allows making decisions about the cost-efficiency of infrastructure investments.

The expected energy unserved or the corresponding value of lost load are more suitable measures disruption risk. They have been widely used in technical reliability models and have also been applied to measure political disruption risk. However, so far there is a lack of models that calculate the combined impact of natural, technical and human risk sources.

The framework we propose bridges this gap. It enables us to answer the questions highlighted in the introduction concerning the security level provided by different infrastructure options, the sensitivity of the results to assumptions and the relative importance of different risk sources.

The security level provided by different options was quantified as the monetary value of expected losses due to disruptions. In our example, increasing gas supplies from Russia offered the highest improvement of security levels compared to the other options. In order to quantify the monetary value of the security level, we would have to multiply the avoided energy unserved with the value of lost load.

The economically efficient security level can be determined by comparing the cost of reducing the expected unserved energy with the cost of preventing disruptions. While a rough estimate
of costs can be obtained on the basis of infrastructure costs, a more detailed analysis will also have to include the impacts of market power on the new supply and demand balance after infrastructure extensions.

The relative importance of different risk sources in our example indicates that the focus of many studies on political risk could be exaggerated. In our example Russian gas imports were more secure than local production, because they diversified technological default risks. While this may be different in other infrastructure systems, it shows that technological risks are at least as important as political threats to supplies. Future model versions should therefore also include a more accurate representation of technical default probabilities.

As a next step we want to apply the methodology to the energy supply infrastructure of the UK and Italy in order to see, whether our model sufficiently captures current reliability levels.

8 Acknowledgements

My research has hugely benefitted from the helpful and inspiring comments of my supervisors Daniel Ralph and Karsten Neuhoff, as well as discussions with other members of the Electricity Research Group, the Energy Security in a Multipolar World Research cluster and questions and discussions during various energy economic events since the beginning of my PhD. I am in particular indebted to Ben Hobbs for the inspiration and advice he provided during his stay at the University of Cambridge.

9 Bibliography

[52] D. Osherson and M.Y. Vardi, “Aggregating disparate estimates of chance,” Games and
10 Appendix Input Assumptions: Dependencies

Technical Default:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wind</th>
<th>0 GW</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.510</td>
<td>0.008</td>
<td>0.992</td>
</tr>
<tr>
<td>2.010</td>
<td>0.008</td>
<td>0.992</td>
</tr>
<tr>
<td>4.000</td>
<td>0.018</td>
<td>0.982</td>
</tr>
<tr>
<td>6.000</td>
<td>0.028</td>
<td>0.972</td>
</tr>
<tr>
<td>8.500</td>
<td>0.038</td>
<td>0.962</td>
</tr>
<tr>
<td>15.000</td>
<td>0.048</td>
<td>0.952</td>
</tr>
<tr>
<td>30.000</td>
<td>0.058</td>
<td>0.942</td>
</tr>
</tbody>
</table>

1b), 2b), 3b) Probability: Gas/CSP Plant

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.510</td>
<td>0.000</td>
</tr>
<tr>
<td>2.010</td>
<td>0.000</td>
</tr>
<tr>
<td>4.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Wind</td>
<td>0 GW</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.510</td>
<td>0.001</td>
</tr>
<tr>
<td>2.010</td>
<td>0.001</td>
</tr>
<tr>
<td>4.000</td>
<td>0.003</td>
</tr>
<tr>
<td>6.000</td>
<td>0.005</td>
</tr>
<tr>
<td>8.500</td>
<td>0.007</td>
</tr>
<tr>
<td>15.000</td>
<td>0.009</td>
</tr>
<tr>
<td>30.000</td>
<td>0.011</td>
</tr>
</tbody>
</table>

3a) Probability: Transmission

Condition:
Political Default:

<table>
<thead>
<tr>
<th>Probability:</th>
<th>Russia</th>
</tr>
</thead>
</table>

Condition:

<table>
<thead>
<tr>
<th>Reserve margin</th>
<th>0 GW</th>
<th>0.5GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.000</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.875</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.750</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.625</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.500</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.375</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.250</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.125</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-1.000</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.875</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.750</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.625</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.500</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.375</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>-0.250</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>Value</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>-0.125</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>0.000</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>0.125</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>0.250</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>0.375</td>
<td>0.170</td>
<td>0.830</td>
</tr>
<tr>
<td>0.500</td>
<td>0.170</td>
<td>0.830</td>
</tr>
<tr>
<td>0.625</td>
<td>0.150</td>
<td>0.850</td>
</tr>
<tr>
<td>0.750</td>
<td>0.120</td>
<td>0.880</td>
</tr>
<tr>
<td>0.875</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.000</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.125</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.250</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.375</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.500</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.625</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.750</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>1.875</td>
<td>0.100</td>
<td>0.900</td>
</tr>
<tr>
<td>2.000</td>
<td>0.100</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Parameter Case 1): pipe risk: 0.017, political risk: 0.002
(default prob. 0.075 in case of low capacity margin, duration 3 weeks)

Stream Capacities:
EU:1.5, RU:0.5	EU:0.5, RU:1.5	EU:1, RU:1
Model Type: A | B | C | C | C
Original EEU [GWh/a]: | -95 | -96 | -99 | -121 | -91
Increase Gas RU by 0.5 GW -> EEU [GWh/a]: | -24 | -26 | -26 | -70 | -32
Increase Gas EU by 0.5 GW -> EEU [GWh/a]: | -45 | -45 | -46 | -32 | -27
Increase CSP Alg by 0.5 GW -> EEU [GWh/a]: | -59 | -60 | -60 | -80 | -50

Parameter Case 2): pipe risk: 0.0, political risk: 0.002

Stream Capacities:
EU:1.5, RU:0.5	EU:0.5, RU:1.5	EU:1, RU:1
Model Type: A | B | C | C | C
Original EEU [GWh/a]: | -68 | -70 | -71 | -96 | -79
Increase Gas RU by 0.5 GW -> EEU [GWh/a]: | -17 | -18 | -19 | -43 | -27
Increase Gas EU by 0.5 GW -> EEU [GWh/a]: | -17 | -18 | -18 | -27 | -20
Increase CSP Alg by 0.5 GW -> EEU [GWh/a]: | -35 | -37 | -39 | -61 | -44

Parameter Case 3): Pipe risk =0.017, political risk 0.03
(default prob. 0.3 in case of low capacity margin, duration 12 weeks)

Stream Capacities:
EU:1.5, RU:0.5	EU:0.5, RU:1.5	EU:1, RU:1
Model Type: A | D | E | E | E
Original EEU [GWh/a]: | -98 | -118 | -149 | -515 | -255
Increase Gas RU by 0.5 GW -> EEU [GWh/a]: | -25 | -43 | -64 | -443 | -173
Increase Gas EU by 0.5 GW -> EEU [GWh/a]: | -46 | -54 | -63 | -176 | -63
Increase CSP Alg by 0.5 GW -> EEU [GWh/a]: | -61 | -80 | -106 | -422 | -174

Figure 7: Sensitivity Analysis of Results.