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This paper studies whether new buildings or old buildings in part of Southern Cal-
ifornia, USA, respond more (in terms of electricity use) to periods of high temper-
ature. California has had extensive building energy efficiency policy development
since the late 1970s. Newer buildings are subject to stricter building energy codes.
However, program evaluation using micro-level field data has been very limited.
This paper uses a large dataset of monthly household-level electricity panel data
linked to census-block-group-level building and household characteristics to esti-
mate the electricity-temperature response of different building vintages. Engineer-
ing models of building codes predict a lower temperature response for newer, more
efficient buildings, ceteris paribus. Controlling for the number of bedrooms and
income, new buildings (1980-2000) have a statistically significant higher tempera-
ture response than old buildings (pre-1979). To explain this finding, new buildings
may be used differently (behavior), new buildings may have different equipment
(appliance stock), or building codes may not be as effective in practice as they are
designed (lax enforcement). In any case, these results advocate for a more careful
interpretation of the past success and external validity of building energy efficiency
programs.
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1. Introduction

California has had extensive building energy efficiency policy development since the late

1970s. Newer buildings are subject to stricter building energy codes which should save energy.

However, program evaluation using micro-level field data has been very limited. This paper

uses a large dataset of monthly household-level electricity panel data linked to census-block-

group-level building and household characteristics to estimate the electricity-temperature

response of different building vintages. Engineering models of building codes predict a lower

temperature response for newer, more efficient buildings, ceteris paribus. That is, the increase

in electricity from 65◦F to 85◦F for a new home should be less than that for an older, less

efficient home.

A comparison of the temperature response of new buildings versus old buildings is im-

portant for climate change and energy policy. In the US, residential buildings account

for 21% of 2008 CO2 emissions (U.S. Envirnmental Protection Agency 2010) with about

50% of residential energy going to space heating and air conditioning (Energy Information

Administration 2009). California since the 1970’s, has implemented increasingly strict build-

ing and appliance codes and have claimed, via engineering calculations, energy/electricity

decreases of 14-18% of total load. Because these standards must meet cost-effectiveness cri-

teria, they are of positive net present value, akin to $20 bills left on the floor. If these results

are real and can be duplicated elsewhere, they provide the potential for decreasing energy

use with positive financial payback. For example, building insulation is the first element in

McKinsey and Co.’s CO2 abatement curve (Per-Anders Enkvist and Rosander 2007) with a

cost of -150€/CO2E.

There are two reasons to be cautious about these claims of energy efficiency and to look

toward field evidence. First, actual savings may not achieve the level of claimed savings,

potentially because engineering assumptions are too optimistic or because actual implemen-

tation does not meet the design specification. Second, other factors such as changes in

occupant behavior, the choice of appliances, and the design of buildings may counteract the

effects of energy efficiency. For example, the rebound effect predicts that utility maximizing
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consumers may increase the use of air conditioning (by setting their thermostats lower) in

response to increased air conditioning energy efficiency.

This paper presents one of the first tests of the cumulative effect of building codes (including

the above-mentioned confounding responses) using field data on electricity use linked to

building vintage. Household billing data in Riverside County, California, USA, is regressed

on time series variation in temperature to estimate temperature response. Cross sectional

variation in building vintage and other household characteristics at the census block group

level identifies the temperature response by vintage. Due to data limitations, it is not possible

to separate building codes from the other factors, though some auxiliary data is discussed.

The main findings are (1) that buildings built in the 1970s use much less electricity on

hot days compared to buildings built prior to 1970, (2) that buildings built in the 1980s and

1990s use more electricity compared to buildings built prior to 1970 and in the 1970s, and

(3) that these results hold after controlling for the number of bedrooms (a proxy for house

size) and income and are robust to two common econometric specifications.

The organization of the paper is as follows. Section 2 presents a literature review. Section

3 presents an econometric model. Section 4 presents a description of the data. Section 5

estimates the model and discusses results. Section 6 concludes.

2. Existing Field Evidence on Energy Efficiency

Per capita total electricity sales for California have been relatively flat since the mid-

1970s, when landmark legislation for energy efficiency was passed. Comparatively, sales for

the rest of the United States have gone up by 50% (Fig 1). Explanations of this time series

phenomenon, commonly referred to as the Rosenfeld Curve, vary widely and many point

to California’s policies, especially the establishment of building and appliance standards, as

major contributors. However, correlation (Fig 1) is not causation.

Though this figure is widely cited as evidence, its strength is tempered when looking at

comparable curves for nearby states. A look at analogous “Rosenfeld Curves” of residential

electricity per capita over time for eight Western States (Fig 2) presents a quick visual

contrast to California’s impressive performance relative to the United States (Fig 1). Three
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other Western states have flat residential electricity per capita since 1974 though they have

had much more limited energy efficiency programs than California and have started them

at different times (Aroonruengsawat, Auffhammer and Sanstad 2009). This comparison of

Fig 2 with Fig 1 suggests that aggregate-level interpretations of California’s success depend

heavily on the choice of counterfactuals. To accurately look at the impact of California’s

energy efficiency policies, we must look at details beyond these aggregate statistics.

The link between energy efficiency policy and energy efficiency savings is controversial

because of lack of reliable field evidence. Relying on field evidence, rather than engineer-

ing estimates, economists and practitioners caution that savings claims from engineering

estimates overestimate real-world savings. Recent surveys such as Gillingham, Newell and

Palmer (2006) and Gillingham, Newell and Palmer (2009) highlight the spectrum of evidence

used to investigate energy efficiency. "Ex-post" studies use field data; electricity use data

(at the household, utility, or state level) is of special interest to economists. In contrast, "ex

Figure 1. The “Rosenfeld” Curve. Per capita electricity sales for California
and the United States, annually from 1960-2006. Source: California Energy
Commission (2007).
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ante" articles, such as Meyers, McMahon, McNeil and Liu (2003), are primarily based on

laboratory studies of energy use under simulated test conditions.

The California Energy Commission publishes their estimates of the savings due to these

policies based on running scenarios through an engineering model; Marshall and Gorin (2007)

find that energy use would be 18% higher in the absence of build. Rosenfeld (2008) argues

that per capita electricity sales would have been 14% higher without California standards

and programs.

Economists and policy evaluators, starting in the 1980s, have questioned whether claimed

energy savings overstate actual savings. Joskow and Marron (1992) describe many factors

Figure 2. Per capita residential electricity sales for eight western states, 1963-
2004 . Source: Energy Information Administration (2007).
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Table 1. Residential Energy Savings due to Building and Appliance Stan-
dards and Total Residential Load, by Utility for 2005 (in GWH). Source: Mar-
shall and Gorin (2007) and author’s calculations

LADWP PGE SCE SDGE SMUD Total
Savings from Building Standards 310 2533 1621 208 760 5431
Savings from Appliance Standards 919 3732 3256 807 599 9314
Total Residential 8000 34000 30000 7100 4500 83600
Percent Savings from Building and
Appliance Standards

15% 18% 16% 14% 30% 18%

that contribute to overstatement of program cost-effectiveness. Although only a small portion

of their broader critique, they highlight the difficulty of extrapolating from the laboratory

to the field. In Joskow and Marron (1993), they reinterpret the results of Brown and White

(1992), an evaluation of a weatherization program in the Pacific Northwest using billing data.

They find that the ratio of measured to estimated savings to be 0.42 and 0.31 for 1988 and

1989 programs respectively. As more current evidence that ex post and ex ante measurements

differ, Larsen and Nesbakken (2004) compare an econometric decomposition approach to the

predictions of engineering models in Norway. They find that the two approaches decompose

end uses quite differently. A number of public agency studies have evaluated weatherization

programs using billing data in a treatment evaluation framework. Hirst (1990) surveys this

work. In looking specifically at different efficiency interventions, Hewett et al (1986) finds the

ratio of actual to predicted savings are under unity for several interventions. Point estimates

of the ratios are 0.775 for high efficiency furnaces and boilers; 0.460 for wall insulation; and

0.784 for attic insulation.

The papers by Aroonruengsawat et al. (2009), Horowitz (2007), Sudarshan and Sweeney

(2008), Loughran and Kulick (2004), and Auffhammer, Blumstein and Fowlie (2008) use

annual data at the state or utility level to estimate the impact of energy efficiency programs.

Research at the annual level cannot look at the intra-year variation in energy usage. Also,

since they use other states or utilities as their counterfactuals, they are prone to potential bias

due to (state, year)-specific differences. In general, they find evidence that energy efficiency

programs reduce energy consumption.
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Several recent papers address temperature response or building codes with monthly house-

hold data. Two very recent papers estimate the impact of building standards or building

vintage using monthly billing data along with detailed building characteristics. Jacobsen

and Kotchen (2009) analyze a code change in Florida using a sharp regression discontinuity.

Though their identification strategy is very clean, their focus on one city in Florida between

1999 and 2005 may have limited external validity, for example, to California. Furthermore,

their estimate of a 4-6% decrease in electricity and natural gas consumption is potentially

explained by a 5% decrease in square footage for the "after code change" treatment group.

Costa and Kahn (2010) estimate the differences in total electricity use by building vintage for

buildings in Sacramento, California. This paper uses a different methodology of specifically

focusing on temperature response. Aroonruengsawat and Auffhammer (2009) examine the

variation in the non-linear relationship between temperature and electricity use by 16 climate

zones in California. They build on earlier work on temperature response with annual-state

level data by Deschênes and Greenstone (2008).

3. Econometric Model

Direct estimation of electricity consumption by vintage is complicated by the fact that

a building’s vintage, i.e. the year it was built, does not change over time. Hence, it is

econometrically incompatible to include both a household fixed effect as well as the building

vintage. Costa and Kahn (2010) elect to not use household fixed effects and instead include

a large number of controls, as depicted in Eq. 1

ln(KWH_useperdayit) =
V INTAGES∑

v=1

[λvViv] + bZ+ εit (1)

The λv are the average differences in electricity consumption across vintages after controlling

for Z, a wide variety of demographic, house characteristic, block characteristics, and tem-

perature variables. My approach differs in two ways. First, the building vintage effect of

interest to me is via temperature response because the strongest effect is through building
7



insulation and related temperature response effects. Second, focusing on building vintage

interacted with temperature response enables me to use the flexibility of a household fixed

effect without relying on parametric assumptions.

In an ideal experimental framework where the building code of each building vintage could

be randomly assigned and observed on an individual basis, the following pooled regression

from Eq. 2 could be run to uncover the average temperature response of each vintage’s

building code.

ln(KWH_useperdayit) =
BINS∑
p=1

( V INTAGES∑
v=1

[βpvViv]
)
∗Dpit + αi + εit (2)

where

• i, t index households, time (monthly billing period)

• BINS represents the number of temperature bins (5◦F wide), p indexes them.

• V INTAGES represents the number of building vintage categories, v indexes them.

• Viv is in [0,1] and represents membership in vintage v for household i

• Dpit is in [0,1] and is the measure of the proportion of days for household i in the

billing cycle t where the average temperature is in the pth bin

The mean temperature-invariant consumption is captured by the household fixed effect, αi.

Importantly, this will capture variation in appliance ownership, building size, and usage pat-

terns that are not correlated with temperature rather than parametrically controlling for it.

The parameters of interest, are the βpv, which represent the temperature response for the

pth temperature bin for the vth vintage1. The set of βpv plotted against the p temperature

bins yields the temperature response. Electricity use should increase with increasing tem-

perature, represented by βp∗v > βp′v when p∗ is hotter than p′ in the air conditioning range

of temperatures for a given v. If new buildings are more efficient, then βpv∗ < βpv′ when v∗

is newer than v′ for any p in the air conditioning range of temperatures.

1One of the temperature bins, 65◦F − 70◦F is left out as the reference temperature, otherwise the rank
condition is violated.
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The first complication relates to the non-random allocation of building vintage. New

buildings tend to be larger, have more rooms, be inhabited by people with larger incomes,

use more electricity, and are more likely to have central air conditioning but less likely to have

room air conditioning (KEMA-XENERGY 2004). Importantly, insofar as these differences

only affect temperature invariant use, these are controlled for by the household fixed effect.

However, these differences may impact the electricity-temperature response. A larger house

takes more energy to cool, higher income may increase the use of air conditioning, and more

ownership of central air conditioning would all positively bias temperature response of new

buildings relative to the idealized experiment (Eq 2). In contrast, higher incomes could be

associated with more efficient appliance choice, which would introduce negative bias.

The second complication for empirical analysis is that vintages are observed at the census

block group level, not at the household level. Hence, instead of a binary variable for mem-

bership in a vintage category, the proportion of households of each vintage in the group is

assigned to each household in the group.

These considerations modify the estimating equation to include (1) control variables for

income and bedrooms, and (2) modify census block group variables to use the group average

for income, bedrooms, and vintage bins. The resulting equation is Eq. 32 .

ln(KWH_useperdayijt) =
∑BINS

p=1

( V INTAGES∑
v=1

[βpvVjv] + (3)

γpln(AvIncomej) +

δpln(AvBedroomsj)
)
∗Dpit +

αi + εit

2This footnote explicitly explains describes the variables in Eq. 3

• i, j, t index households, census block groups, and time (monthly billing period), respectively
• BINS represents the number of temperature bins, p indexes them.
• V INTAGES represents the number of building vintage categories, v indexes them.
• Vjv is in [0,1] and represents the proportion of buildings in j for vintage v
• Dpit is in [0,1] and is the measure of the proportion of days for household i in the billing cyle t where

the average temperature is in the pth bin
• AvIncomej is the average income per household in j
• AvBedroomsj is the average bedrooms per household j

9



4. Description of the Data

Three sources of information are combined to run this analysis at the (household, month)

level for bills and the (census block group, month) level for socioeconomic and building char-

acteristics. First, fine-scale daily weather data is computed from PRISM data (Daly 1996)

and National Climatic Data Center (2009) data using the algorithm developed by Schlenker

and Roberts (2009) for agricultural yield estimation. Second, under special arrangement with

Southern California Edison (SCE) and San Diego Gas and Electric (SDGE), monthly billing

data is used. Third, detailed census-block-group-level data is taken from the Summary File

3 reports of the US Census for 2000 (United States Census Bureau 2009).

The 2000 US Census provides housing age, income, and house size. Summary File 3 has,

by census block group, proportions of the vintage of housing, proportions of housing type

(apartment vs single family) and the number of rooms, and proportions within different

income groups. A census block group has a size on the order of 500 housing units. Figure

3 has a map of part of Riverside County by census tract; a census tract is roughly 3 census

blocks. The shading corresponds to the proportion of housing in a tract that was built

after 1980, with darker meaning more new construction. Hence, within this county, there

is substantial spatial variation in the age of housing which is needed for estimating vintage

differentiated temperature response.

Weather data is generated according to the algorithm used by Schlenker and Roberts

(2009), and the reader is directed there for a more full description of the algorithm as well

as diagnostics that show the methodology is reliable. Billing data is then matched via Zip9

to the 4mile x 4mile grid of the weather data and to the census block group (polygon) for

census data within which the Zip9’s Lat, Lon is contained.

The current results are restricted to running on a 1 in 5 random sample of households

within Riverside County for which SCE is the electric utility. The reason Riverside County

was chosen was because it is an inland area with a wide range of temperatures, there is con-

siderable variation in the building vintage built since building standards were implemented,

and because Aroonruengsawat and Auffhammer (2009) found this region to have substantial
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Figure 3. Variation in building vintage in Riverside County, California, USA.
Shading represents % of buildings built since 1980. Darker means higher pro-
portion of new buildings.
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average temperature response. A 1 in 5 random sample was used to decrease the number of

observations to a workable size of 3.9million observations of about 32000 households with an

average of 121 bills per account, or about 10 years. Data is present from 1998-2009. Bills

with 25 days or less or 35 days or more were dropped (about 5%). Customers noted as

all-electric customers or as CARE customers (low-income rate program) were not dropped.

Summary statistics of the data are in Table 2. The top section reports information from

the billing data. The average household use per day is 25.5KWH, or 9307KWH per year.

This is about 50% higher than the 6189 KWH per year average for the SCE utility (KEMA-

XENERGY 2004) but lower than the national average of 11,500 KWH per year (Energy

Information Administration 2009).

The middle section of the summary statistics is weather data that has been binned in 5◦F

bins according to the mean temperature for the day and scaled by the days in the bill so that

they represent the proportion of time in a billing cycle in each bin. The sum of the means

of the bins sum up to 1. The mode of the average temperature is bin55-60◦F and 15% of all

days are in this bin.

The last section of the summary statistics is building and household characteristics from

the Census data at the level of the census block group. The average number of bedrooms is

2.7 and the average household income is about $52,000.3 By the census block groups, 80%

of buildings were built since 1970, 60% since 1980, and 26% since 1990. That some counties

have had 0 percent built since 1970 and some have had 97% since 1990 means that there is

substantial variation across census block group in building vintage.

3Census data gives counts of households in different bedrooms, rooms, and income bins. The average is
approximate because a representative value is used for each bin.
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Table 2: Summary Statistics.

Variable Mean Std. Dev. Min Max
BILLING DATA

useperday 25.52 22.17 -341.2 1376
days 30.44 1.499 26 34

WEATHER DATA (Temperature Bins)
bin20-25◦F 0
bin25-30◦F 6.21E-08
bin30-35◦F 1.55E-05
bin35-40◦F 5.78E-04
bin40-45◦F 0.01
bin45-50◦F 0.05
bin50-55◦F 0.11
bin55-60◦F 0.15
bin60-65◦F 0.14
bin65-70◦F 0.12
bin70-75◦F 0.13
bin75-80◦F 0.12
bin80-85◦F 0.08
bin85-90◦F 0.04
bin90-95◦F 0.04
bin95-100◦F 0.01
bin100-105◦F 1.71E-3
bin105-110◦F 8.68E-5
bin110-115◦F 0

CENSUS DATA
approxAvBedrooms 2.700 0.5777 1.117 4.362
approxAvRooms 5.492 0.9386 2.780 7.938
percentsince1970 0.802 0.214 0 1
percentsince1980 0.596 0.292 0 1
percentsince1990 0.263 0.246 0 0.977
approxAvIncome $52253 $17083 $19291 $108917
housingUnits 1176 1017 40 5539

Observations 3903836
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Figure 4. Temperature response by building vintage,
Dependent variable is ln(KWH_perday)

Estimated temperature response by building vintage at mean of ln(AverageIncome) and
AverageBedrooms, log specification.

5. Results

5.1. Main Results, log specifications. First, I present a simpler to interpret graph in

Figure 4. This shows the estimated temperature response varying by four categories of

building vintage (Pre1970s, 1970s, 1980s, 1990s). Notice that the top curve is for the 1990s

building vintage category; hence these buildings have point estimates representing the highest

temperature response.

The detailed results of the main specification in Eq. 3 are presented in tabular form in

Table 3 and presented graphically for 5 degree bins in Fig 5. These are results for one

regression. In the table, each column is for temperature response interacted with different

covariates.
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Figure 5. Temperature response and interactions with building vintage and
other covariates, log specification

To interpret the graph, data points are indicated by the upper bound of the bin; i.e. the data point
at 70 refers to the bin from 65◦F to 70◦F. 65◦F has been chosen as the zero point; hence all
amounts are relative to the electricity use in the 65◦F bin. Data points are jittered horizontally so
that one can distinguish each data series separately. The error bars signify 95% confidence
intervals. The y-axis is ln(KWH_useperday). Only the region from 45 to 85◦F is displayed; there
is much less data in the more extreme temperature ranges which results in very statistically
imprecise estimates.

This graph differs from the earlier graph in that the ybIN1990 curve represents the differ-

ence between temperature response for 1990s buildings relative to pre1970s beuildings.

To explain each data series, the “bin” curve represents the electricity-temperature response

at the mean of ln(AverageIncome) and the mean of AverageBedrooms for buildings built

prior to 1970. For this cohort, the estimated temperature response decreases when one ap-

proaches 65◦F and then increases past 65◦F. To interpret a point estimate, if the temperature

were increased from 60-65◦F to 75-80◦F, then the home is estimated to use about 40% more
15



Table 3. Estimation results, temperature response and interactions with vin-
tage and other covariates
Dependent variable is ln(KWH_perday)

Bin base in1970-base in1980-base in1990-base ln(Inc) Bedrooms

bin040 0.434 -1.037 0.616 -0.313 -0.225 0.0336
0.177 0.399 0.242 0.238 0.0714 0.0775

bin045 0.447 -0.142 -0.127 0.217 0.0137 0.119
0.0388 0.0806 0.0491 0.051 0.0164 0.0169

bin050 0.229 -0.0735 -0.123 -0.0977 -0.0342 0.0663
0.0173 0.0337 0.0213 0.0224 0.00626 0.00613

bin055 0.128 -0.0439 0.00887 0.0318 -0.0766 0.0638
0.0114 0.0222 0.0145 0.0152 0.00395 0.00381

bin060 -0.00431 0.05 0.06 0.11 -0.0276 0.0157
0.0132 0.0258 0.0172 0.018 0.00454 0.00443

bin070 -0.0263 -0.153 -0.00441 0.0816 -0.0578 0.0652
0.0127 0.025 0.0166 0.0174 0.00446 0.00426

bin075 0.109 -0.0303 0.0953 0.158 -0.0927 0.0918
0.0101 0.0199 0.0132 0.0138 0.00369 0.00352

bin080 0.466 -0.135 0.0129 0.106 -0.15 0.14
0.0112 0.0219 0.0144 0.0153 0.00386 0.0038

bin085 0.637 -0.202 0.166 0.334 -0.22 0.213
0.0125 0.0243 0.0162 0.0173 0.00408 0.00417

bin090 1.083 -0.627 -0.31 -0.119 -0.2 0.289
0.0165 0.0306 0.0225 0.0268 0.0046 0.00609

Includes household-level fixed effects. r2 = 0.266. 3885761 observations over 32038
households. Results for temperature bins <40◦F or >90◦F have been omitted. Standard
errors in second row.

electricity per day. drBed and drlnInc represent the additional impact for a one standard de-

viation difference in AverageBedrooms or ln(AverageIncome). These variables were demeaned

and rescaled by the standard deviation to aid in interpretation. Increasing AverageBedrooms

(drBed) has the expected sign of increasing the temperature response, and having greater

effect at more extreme temperatures. Interestingly, increasing ln(AverageIncome) (drlnInc)

has the opposite effect; coefficients are negative meaning richer homes are less temperature

responsive. This may be because, holding all else constant, richer people in this area have

better appliances or better quality homes in terms of thermal energy efficiency.

The results are mostly statistically significantly different from zero, especially far away

from 65◦F temperatures. For both cold weather (left of 65◦F) and hot weather (right of

65◦F), ybIN1970 is negative, meaning that buildings built in the 1970s use less electricity
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than pre-1970 buildings and thus have a lower temperature response, consistent in sign with

the predictions of energy efficiency. In contrast, ybIN1980 is mixed, with negative coefficients

left of 65◦F and positive coefficients to the right of 65◦F. Focusing on hot weather (right of

65◦F), not only do these buildings have a higher temperature response than 1970s buildings,

but they are worse than those built prior to 1970.

For buildings built since the 1990s, the results are even worse for hot weather. ybIN1990

is even more positive than ybIN1980, which means that buildings in the 1990s have a higher

temperature response curve than buildings built in the 1980s, buildings built in the 1970s,

and pre-1970 buildings.

5.2. Secondary Results, level specifications. Figures 6 and 7 shows the results of

regression with identical covariates but with the regressor set as the level of KWH_perday

rather than ln(KWH_perday). Results do change, with the 1980s building coefficients in

hot weather hovering near zero from 70 to 80◦F. However, the ordering of yb1970, yb1980,

and yb1990 are the same.

5.3. Additional robustness checks / Alternative identification strategies. A total

of 52 similar specifications were run, which included interactions of several combinations of

building vintage, income, bedrooms. These interactions may be important, and some are

suggested by engineering models. For example, insulation will have a different effect if there

are more bedrooms in a non-additive way. Equivalent graphs for each were produced, and

available upon request, but omitted here because of space constraints. The results for the

1970s, 1980s, and 1990s held under these alternative specifications.

Economists should note the omission of prices in the regressions, and secondly the inclusion

of some data from the time period of the California Electricity Crisis of 2000-2001. To the

first concern, there is price variation, but the price variation is assumed to be uncorrelated

with temperature variation. Hence, by the property of weather exogeneity, omitting prices

will not bias these results. An important caveat is if price elasticities vary with temperature,

in which case changes on prices could bias results. In most specifications, price elasticities

are not estimated as depending on temperature. In one important exception, (Reiss and
17



Figure 6. Temperature response by building vintage
Dependent variable is KWH_perday

Estimated temperature response by building vintage at mean of ln(AverageIncome) and
AverageBedrooms, log specification.

White 2005) separately estimate price elasticities for different end uses, but do not allow

elasticity to also vary by temperature. To the second criticism, it is likely that rolling

blackouts will mute the temperature response on very hot days subject to rolling blackouts,

or that households of different vintages adapted their energy use differently. The direction

of bias could go either way depending on whether blackouts and biases were more common

for different building vintages.

As previously admitted, the coefficients are not exclusively linked to building codes, mean-

ing that other factors may be driving the results. First, it may be that buildings in the 1980s

or 1990s have different rates of air conditioning appliance ownership compared to those

built earlier. Consequently, the increases in electricity use would not be “waste” in terms
18



Figure 7. Temperature response and interactions with building vintage and
other covariates, level specification

of lost energy, but would represent increases in comfort. However, auxiliary data (KEMA-

XENERGY 2004)shows that air conditioning ownership is uniformly high ( 90-100%) across

building vintages with central air conditioning more common than room air conditioners for

newer buildings. However, the temperature response for 1990s buildings is about 30-36%

higher at 90◦F, which could not be explained even if adjusted down by to 10% difference in

air conditioning ownership.

Secondly, although I control for the number of bedrooms; thus capturing size increases

where bedrooms have increased, I do not control for the size of each bedroom. As depicted

in the Fig 8 below, which comes from Census Data, the average size of buildings has in-

creased. Thirdly, there may be a compositional difference between 1970s buildings and those

constructed afterward. Apartments may bias the results. If more 1970s buildings are apart-

ments and more 1990s buildings are single family homes, then the coefficient on ybIN1990

will pick up the (presumably higher) temperature response of single family homes. Lastly,
19



Figure 8. Homesizes for new single family homes by census region. Source:
(US Census n.d.)

data on retrofits are unfortunately not available. Building retrofits (that change the building

shell) are legally subject to building code requirements. Appliance standards may improve

old buildings when appliances are replaced.

Addressing these potential confounds is the primary concern of future work on this paper.

This means finding alternate ways of identification, i.e. constructing a better counterfac-

tual. I will try to incorporate information on the proportion of apartments, incorporate

the homogeneity of building vintage (e.g., tract home development) within a region, control

for income and bedrooms nonlinearly, use rooms instead of bedrooms to potentially address

shortcomings of bedrooms as a proxy for size, and conduct separate estimation for all-electric

customers and subsidized low-income customers. Conducting this analysis for more counties

may also allow us to see if this pattern of results also holds for the rest of California.
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Despite these potential problems, the focus on temperature response both targets the part

of energy use that building codes address, temperature response, while allowing for flexible

control for household variation in appliances and behavior through the household fixed effect.

The already completed robustness checks have resulted in a fairly stable result.

This paper finds (1) that buildings built in the 1970s use much less electricity on hot days

compared to buildings built prior to 1970, (2) that buildings built in the 1980s and 1990s

use more electricity compared to buildings built prior to 1970 and in the 1970s, and (3) that

these results are statistically significant, hold after controlling for the number of bedrooms (a

proxy for house size) and income, and are robust to two common econometric specifications.

6. Conclusion

The key contribution of this paper is to focus on the impact of building vintage on tem-

perature response. The key finding is that temperature response for new buildings (or more

precisely, in census block groups with more new buildings) varies by vintage, that 1970s

buildings have a lower temperature response than pre-1970s buildings and that 1990s build-

ings have a higher temperature response. This evidence is against the predictions implied by

building standards legislation, which predicts lower temperature response.

It is not safe to conclude from this paper that building codes in California have failed, but

it should temper declarations that they are a success and especially temper the interpretation

of the Rosenfeld Curve for California as “evidence” that California energy efficiency policies

are the cause of California’s impressive energy efficiency performance.

It’s important to carefully interpret what the claims of building codes and energy effi-

ciency have been. This can be facilitated by placing claims into two categories: relative-to-

counterfactual changes and absolute changes. The numbers presented by the CEC exemplify

relative-to-counterfactual changes. Using an engineering model, energy usage is 18% lower

with building standards as designed as compared to a hypothetical world without any stan-

dard. The proper way to validate this claim in the field is to compare a building that

implemented the standard with a building that doesn’t meet the standard; unfortunately a

building that doesn’t meet the standard doesn’t exist and so this claim cannot be validated.
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In contrast, the Rosenfeld Curve offers an absolute comparison. Per capita residential

electricity use in California has not increased since roughly 1974. This absolute comparison

doesn’t require us to look at a hypothetical counterfactual. If people in old buildings are the

same as they were in 1974, this means that people in new buildings overall are doing the

same. We know that these new buildings are larger. Hence, they must be using less energy in

order to have the same overall performance. But this paper shows that they are doing worse

in terms of temperature response; with temperature response being the primary mechanism

of building standards. Hence, by this logic, something else must be going on.

If we accept that 1990s buildings have overall higher temperature response and that the

statewide residential electricity use is flat, this leads us to explore alternatives, some of which

may not be pleasant. As the buildings performance contractors point out, there is a difference

between the standard as designed and the standard as implemented. If building standard

implementation isn’t tested, there are many reasons why builders will shirk in this category. If

bad implementation is in fact rampant, the upside is that there is a large potential resource for

energy savings (without reducing comfort) if implementation is improved. Another potential

explanation is that flatness of electricity use is due to compositional changes. That is, if

development from 1970-1990s was concentrated in electricity-non-intensive coastal areas, this

would lead to an apparent decrease in electricity relative to uniform development. However,

in recent years, development is expected to be more concentrated in the hotter inland areas of

California. As discussed at length in Aroonruengsawat and Auffhammer (2009), population

growth and where population growth occurs could be the most significant drivers of electricity

growth, swamping energy efficiency. Cost effective energy efficiency is still an important

policy, but verification that it delivers on its promise should not be overlooked.

Energy efficiency policies have been tapped as a large resource to address climate change. In

California’s current efforts (California Air Resources Board December 2008), approximately

20% of the reductions to meet 2020 goals come from energy efficiency. It is imperative to

test results in the field and understand what the policies actually deliver, not just what they

promise to deliver.
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