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Abstract

The Hubbert theory of oil depletion, which states that oil pro-

duction in large regions follows a bell-shaped curve over time, has

been cited as a method to predict the future of global oil production.

However, the assumptions of the Hubbert method have never been

rigourously tested with a large dataset. In this paper, the Hubbert

theory of depletion is tested against five alternative models, using a set

of 139 oil production curves. These curves are sub-national (United

States state-level, United States regional-level), national, and multi-

national (subcontinental and continental) in scale. Best-fitting curves

are generated for each region using the six models, and the quality of

fit is compared across models. We also test two assertions that have

been made with respect to oil depletion: that production over time in a

region tends to be symmetric, and that production is more bell-shaped

in larger regions than in smaller regions.

∗I would like to gratefully acknowledge the assistance of Anand Patil, Alex Farrell, and
Jim Kirchner in the preparation and revision of this paper.
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1 Introduction and context

Since nearly the beginning of commercial exploitation of oil, there has been

great interest in two related questions: how much oil exists in the world,

and when will humanity run out of oil? This very old discussion has re-

cently resurfaced, as general interest in oil depletion has increased along

with increasing oil prices. Recent projections of global oil production have

been made using the Hubbert theory of oil depletion, and these projections

have been rejected by those who doubt the effectiveness of the method. Im-

portantly, however, the Hubbert theory has never been rigourously tested

with any large dataset, and many Hubbert-type predictions are based on

proprietary datasets, all but precluding the process of peer review. This pa-

per aims to test some aspects of the Hubbert theory against other plausible

theories of how oil production varies over time.

The Hubbert theory of oil depletion

The Hubbert theory of oil depletion was first presented in 1956 by M. King

Hubbert, a senior research geologist with Shell Oil [19]. As presented in

his 1956 paper, he made projections of future United States oil production

based on two estimates of the total amount of oil that would be produced in

the United States. He did not provide a functional form for his prediction

in this early paper, but instead fit past production to a bell-shaped curve in

which the area under the curve was equal to his predictions of the amount

of total oil production. Using this method, he arrived at two predicted dates

for peak production, one in the mid-1960s, the other around 1970.

By 1959, he had added other elements to his analysis [20]. First, he speci-

fied a functional form, the logistic curve, stating that cumulative production

over time would follow a logistic curve, and thus that yearly production
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would follow the first derivative of the logistic curve, which is bell-shaped.

He also analyzed patterns of discovery and production. He plotted cumu-

lated discoveries alongside cumulated production and noted that the curves

were similar in shape but shifted in time [19]. With this paper, most of the

major elements of modern Hubbert analysis were developed.

United States oil production peaked in the early 1970s, and with this vin-

dication the Hubbert theory became an important tool for those concerned

about depletion of natural resources [13]. This success caused Hubbert and

others to project future global oil production. The recent explosion of inter-

est in the Hubbert theory started in the 1990s with Colin Campbell’s efforts

to use it to predict global oil production [9].

As currently practiced, Hubbert modeling is really a constellation of

techniques, many of which were developed by Hubbert himself in his early

papers. The methods used vary widely by analyst, but the core techniques

of modern Hubbert analysis are as follows:

Analysis of past discoveries - regional discovery data are plotted, and

sometimes adjusted for reserve growth, and a best-fitting curve (typi-

cally Gaussian) is matched to discoveries.

Estimation of future oil discoveries - future amounts of oil remaining

to be found are extrapolated in a number of ways, including estimating

an asymptote for discovery growth when plotting cumulative discov-

eries by cumulative wells drilled [9]; by using a newer technique some-

times called “Hubbert linearization” to project ultimate recovery [13];

or by using a statistical relationship such as the parabolic fractal law

to attempt to infer the size distribution of remaining fields using the

distribution of already-discovered field sizes [22].

Projection of future production - using discovery data in conjunction
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with estimated future production, a curve (again, typically Gaussian)

is fit to historical production data such that the area under the curve

equals the sum of discovered and yet-to-find oil.

Hubbert modeling, as typically practiced, includes a number of assump-

tions, including: that production follows a bell-shaped curve; that produc-

tion is symmetric over time (i.e. the decline in production will mirror the

increase in production, and the year of maximum production, or peak year,

occurs when the resource is half depleted); that production will follow dis-

covery in functional form and with a constant time lag; and, lastly, that pro-

duction increases and decreases in a single “up-down” cycle without multiple

peaks.

Alternative models of oil depletion

A number of models of oil depletion have been used over time to forecast fu-

ture oil production. The most simple of these models, and often not thought

of as a “model” at all, is the reserve to production ratio (R/P), or simply

the quantity of current reserves divided by current production. Criticisms

of this methodology are too numerous to cite, but the general problem with

this analysis is that neither reserves nor production are constant over time,

making it nearly valueless as a forecasting technique.

Modified versions of the Hubbert methodology have been developed.

These include a model by Hallock et al. which uses a modified version of the

bell-shaped curve, with a peak at 60% of ultimate production instead of the

typical 50% [17]. This method implies an asymmetric shape to production

and a steeper rate of decline than increase.

Another simple model is a linear oil depletion model, where production

increases linearly and then declines linearly as well, but such a model has

never received much attention, likely due to its poor fit to smooth-topped
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production curves. However, Hirsch [18] notes that United States production

in the period 1945-2000 fits a linear production profile better than a bell-

shaped curve.

Exponential models are another possible simple model. Hubbert used an

exponential fit in the 1956 paper where he first presents his method, plotting

United States coal and oil production on a semi-logarithmic scale, noting

the straight line over much of history. A straight line on such axes indicates

exponential growth [19]. Also, Wood et al., in a more modern analysis,

assumed a 2% exponential growth for world oil production, followed by a

decline “at an R/P ratio of 10” [31]. This decline at a constant R/P of 10

is equivalent to exponential decline of 10% per year.

Hirsch studied peaking rates of a small number of production regions,

including the United States, Texas, the United Kingdom, and Norway, and

noted that production peaks have tended to be steeper and sharper than

predicted by the Hubbert theory [18]. Some bottom-up modeling efforts, us-

ing models that simulate finding and extracting resources over time, suggest

that production would be roughly bell-shaped, but not necessarily symmet-

ric [7, 30]. Bardi critiques the assumption of symmetrical production over

time, stating that there is “no magic in the ‘midpoint’ of the production of

a mineral resource” and that production can exhibit a decline rate greater

than the rate of increase [7].

Problems with current depletion analysis

There are significant difficulties with current methods of predicting future

oil production. Two classes of problems emerge: those resulting from poor

data, and those resulting from uncertain methodologies.

The first class of problems stems from poor access to data on oil pro-

duction and reserves. Even if it were agreed that the Hubbert methodology
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was effective in projecting future production, data unavailability would still

hinder analysis. This is for two reasons. First, there is still uncertainty

with respect to remaining volumes of oil to be found. This uncertainty is

likely decreasing over time as exploration continues. Andrews and Udall and

Ahlbrandt have collected projections of estimated ultimate recovery of oil

(EUR), plots of which suggest that we are perhaps asymptotically approach-

ing stable estimates of total conventional oil recoverable [1, 2]. Second, there

is no access to data from many countries, including the producers that are

most likely to influence the date of peak production, such as OPEC.

This lack of data manifests itself repeatedly and in multiple guises in

Hubbert-type analysis. Most analysts using the Hubbert methodology have

used proprietary datasets which are not accessible except at high cost [9,

10, 11]. Most publicly available datasets only contain data back to the

1970s or 1960s [8, 16]. This discrepancy between the data used by Hubbert

theorists and available data makes checking their work impossible and invites

skepticism of their results [24].

Another manifestation of poor data availability is that most studies rely

on a small number of cases, such that the United States is plotted many

times, but other regions are not. Campbell [12] plots dozens of curves, but

Lynch states that “in Campbell (2003)...only 8 of 51 non-OPEC countries”

appear to follow a bell-shaped curve [24]. Certainly Campbell would disagree

with this assessment, but it is difficult to determine who is correct in such

a situation without access to the underlying data. Additionally Campbell’s

plots often do not distinguish between historical data and projections and

he does not discuss the quality of the model fit to data [9, 12]. This makes

it difficult to estimate even qualitatively the goodness of fit of his figures.

The second set of problems for predicting the future of oil production

is due to uncertainty about methodologies. Perhaps the most fundamental
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points of confusion are that many types of predictions are made, definitions

of what is being predicted are often unclear, and there is disagreement about

what quantities are important to predict. Campbell is quite clear in his def-

initions of what is being predicted [10], focusing on “conventional” oil, and

separating these production data from deep offshore, heavy oil, etc. Others,

more economically oriented, pay less mind to the distinction between these

resources [29] and emphasize the substitutability of resources [21]. These

groups argue as if they are producing comparable estimates, when often

they are not. In essence, these groups disagree about what the “important”

quantity is: Hubbert modelers are interested in production and depletion of

conventional oil, and often dismiss alternatives such as low-quality petroleum

resources, while economic observers are interested primarily in the transition

to substitutes for conventional oil, and they find the question of the deple-

tion of a specifically defined resource uninteresting or unimportant. Not

surprisingly, it is difficult to find agreement between the parties when the

questions they ask are different.

Most Hubbert analyses are based on the Gaussian curve, although some

are based on the very similar logistic curve [13]. This leads to another

methodological difficulty: the justification for the use of the Gaussian curve

in predicting future production. Laherrere [23] states that the Hubbert the-

ory works best with large numbers of disaggregated producers, based on the

central limit theorem (CLT), which is the justification for the use of the

Gaussian curve in statistical applications. Laherrere states that that in the

lower-48 states of the United States “there are over 20,000 producers acting

in random,” leading to a Gaussian curve.

As has been argued previously, there is little theoretical basis for the

assumption of a Gaussian production curve based on the CLT [6]. There are

two problems with citing the CLT in this way. First, the CLT traditionally
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applies to points of data where the independent variable is the measured

value of a characteristic and the dependent variable is the number of mea-

surements of that value that are recorded (such as the number of children of

height 1 m). Petroleum production curves measure production per unit time

(e.g. barrels or m3 per year), not the traditional dimensions for normally

distributed phenomena.

More importantly, the CLT applies only to distributions that are summed

and independent of one another. While the first criteria is met, the second

criterion is not met. Production at a given oil field is determined at least in

part by the decisions of the producers. These producers, across regions, na-

tions, and even at a global level, respond to common stimuli. At a regional

level, common stimuli include local transport costs, availability of nearby

markets, and regulatory pressures (such as state or provincial environmental

mandates), while national politics can force production up or down, partic-

ularly in nations with central control over production (e.g. OPEC). And, of

course, at the global scale, both long and short-term trends influence pro-

ducers simultaneously across the globe. Thus, there is no theoretical reason

to expect the CLT to hold. This does not mean that production could not,

in reality, follow a Gaussian shaped production function, but that there is

no a priori reason to suspect that that it will.

Given these difficulties with current methodologies, we seek to test cer-

tain assumptions made during Hubbert analysis.

2 Methods of analysis

In this paper we perform three tests of the Hubbert theory. We first seek

to test two assumptions of the Hubbert model. We ask if the Gaussian

Hubbert model fits historical production data better than five other simple
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models. We then ask if regional oil production curves have been historically

symmetric. Lastly, we test a commonly made assertion about oil depletion:

that the Hubbert model fits larger regions better than smaller regions, due to

a “smoothing” behavior resulting from summing smaller production curves.

We emphasize that we do not test the predictive ability of the Hubbert

model, but simply examine the validity of these assumptions using historical

data.

Datasets used

We attempted to collect the largest possible number of production curves for

analysis. Data were collected or compiled at 4 scales: United States state-

level, United States regional-level (created by summing state-level data),

national-level, and multi-national-level (such as continental or sub-continental).

The sources and years included in these data are shown in Table 1. The re-

gions studied are listed in Table 2.

These data series are formed by joining two or more separate series, be-

cuase early production data were only available in earlier reference volumes.

In the vast majority of cases the transition between datasets was smooth (i.e.

values were equal in both datasets for overlapping years near the transition).

This is even the case between DeGolyer and MacNaughton data and API

data, suggesting that these sources obtained their data from similar sources.

Data were purposely collected at all production scales. Data for smaller

regions were summed into larger aggregate regions to acknowledge that pro-

duction statistics are collected for regions that are arbitrarily defined with

respect to geology. Some states in the United States are the size of na-

tions, while some nations are nearly the size of continents (e.g. Former

Soviet Union). This aggregation of smaller regions into larger regions cre-

ates a smoother spectrum of regional sizes. The definitions of the regions
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Table 1: Datasets used in analysis
Regional level Dataset namea Source Years
US State Level API [3] 1859-1946

API [5] 1947-1989
DeGolyer and
MacNaughton

[14] 1990-2004b

US Regional Level API [3] 1859-1946
API [5] 1947-1989
DeGolyer and
MacNaugton

[14] 1990-2004

National Level API [4] 1859-1964
DeGolyer and
MacNaughton

[14] 1965-2004

World Regional Level API [4] 1859-1964
DeGolyer and
MacNaughton

[14] 1965-2004

a - Data for some regions, specifically Sudan, Morocco, and Equatorial
Guinea, were collected from the EIA’s International Energy Annual 2003
[15] because these regions were not included in [14].
b - Some states use API data until 2002 rather than DeGolyer and Mac-
Naughton data from 1990 to 2004. Included in these states are Arizona,
Louisiana, Nevada, Texas, and Washington. These regions suffered from in-
consistent regional definitions that made them incomparable to the earlier
data series.

are shown in Appendix A.

Methodology to determine best fitting model in each region

The first Hubbert theory assumption we test is whether a bell-shaped pro-

duction curve fits past production data more accurately than other simple

models. To this end, we test the Hubbert model against five other models.

These six models are of two types: symmetric three-parameter models (Hub-

bert, linear, exponential) and asymmetric four-parameter models (asymmet-

ric Hubbert, asymmetric linear and asymmetric exponential). Two tests are

conducted: first, the three symmetric models are compared, and all then

six models are compared. These tests will be referred to as the three-model

comparison and the six-model comparison.
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Table 2: Regions analyzeda

United States
state-level

United States re-
gions and divisions

Nations Nations cont. Sub-continents and
continents

Alabama New England Albania Mexico Middle Africa
Alaska Middle Atlantic Algeria Morocco Northern Africa
Arizona East North Central Angola Netherlands Western Africa
Arkansas West North Central Argentina New Guinea Caribbean
California South Atlantic Australia New Zealand Central America
Colorado East South Central Austria Nigeria South America
Florida West South Central Bahrain Norway Northern America
Illinois Mountain Bolivia Oman Central Asia
Indiana Pacific Brazil Pakistan Eastern Asia
Kansas Northeast Brunei/Malaysia Peru Southern Asia
Kentucky Midwest Bulgaria Philippines South-Eastern Asia
Louisiana South Burma Poland Western Asia
Michigan West Cameroon Qatar Eastern Europe
Mississippi West of Miss. River Canada Republic of Congob Northern Europe
Missouri East of Miss. River Chile Rumania Southern Europe
Montana Lower-48 China Saudi Arabia Western Europe
Nebraska Columbia Spain Australia and NZc

Nevada Czechoslovakia Sudan Melanesia
New Mexico Denmark Syria Africa
New York Ecuador Thailand Americas
North Dakota Egypt Trinidad Asia
Ohio Equatorial Guinea Tunisia Europe
Oklahoma FSUd Turkey Oceania
Pennsylvania France UAEe World
South Dakota Gabon United Kingdom
Tennessee Germany United States
Texas Greece Venezuela
Utah Hungary Yemen
Virginia India Yugoslaviaf

Washington Indonesia Zaireg

West Virginia Iran
Wyoming Iraq

Italy
Japan
Kuwait
Libya

a - The regional definitions for the grouping of US state-level and world regional data are shown
in Appendix A, which is available at http : \\abrandt.berkeley.edu\hubbert
b - The Republic of the Congo is listed simply as “Congo” in the datasets and any graphics from
this research.
c - Australia and New Zealand
d - Former Soviet Union. Data for the FSU are as follows: From 1859 to 1930 are API data for
“Russia”. From 1931 to 2004 are DeGolyer MacNaughton data for “Former Soviet Union.”
e - United Arab Emirates
f - Yugoslavia in recent DeGolyer MacNaughton datasets is listed as “Former Yugoslavia.”
g - The Democratic Republic of the Congo, sometimes known as Congo-Kinshasa, is referred to in
the dataset used in this research as “Zaire” because data collected from early sources use its older
name of Zaire.
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Table 3: Six studied models and their featuresa

Model Number Parameters fit by software
of parameters

Hubbert 3 Maximum production, year of maximum produc-
tion, standard deviation of production curve

Linear 3 Year of first production, year of maximum pro-
duction, slope of increase and decrease

Exponential 3 Year of first production, year of maximum pro-
duction, rate of increase and decrease

Asymmetrical
Hubbert

4 Maximum production, year of maximum produc-
tion, standard deviation of increasing side of pro-
duction curve, standard deviation of decreasing
side of production curve

Asymmetrical
linear

4 Year of first production, year of maximum pro-
duction, slope of increase, slope of decrease

Asymmetrical
exponential

4 Year of first production, year of maximum pro-
duction, rate of increase, and rate of decrease

a - The mathematical formulation of each of these models is given in Ap-
pendix B.

These models were tested using the non-linear modeling function of the

JMP statistical software package. For each of these models, there are a

number of parameters that can vary, such as peak year, rates of change, and

year of first production. These parameters are adjusted by the statistical

software so as to minimize the sum of squared errors (SSE). The values of the

parameters that minimize the SSE represent the best fit for that model. The

models are listed in Table 3, along with the parameters fit by the software in

each of the models. The mathematical formulation of the models is shown

in Appendix B. Schematics of each of the models are illustrated in Figure 1,

while regions that are fit well by each of the six models are shown in Figure

2.

Comparing models

After the non-linear fitting algorithm determines the best values of the model

parameters, we can compare the quality of the fit across models to determine
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(a) Gaussian Hubbert pro-
duction curve
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(b) linear production curve
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(c) exponential production
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(d) asymmetric Hubbert
production curve
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(e) asymmetric linear pro-
duction curve
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(f) asymmetric exponen-
tial production curve

Figure 1: Schematic illustrations of the six tested models

which of the models studied is most appropriate for each region. There

is no single method to determine which model fits best, and it must be

emphasized that it is impossible to determine, statistically or otherwise,

which model is truly “correct,” or even to definitively say which model fits

best [25]. Given these uncertainties, the methodology used to assign a most

appropriate model to each region is described below.

After all models are fit to all regions, we next discard regions where the

fitting process is fundamentally flawed. One flaw is insufficient data to make

a meaningful fit (only New England and Washington state, with 0 and 4

years of production, respectively). Regions are also discarded because they

do not conform to one of the basic assumptions of the models tested. The

Hubbert model, as well as all other models tested, assume that production

rises and falls in a single cycle. They also implicitly assume that the pro-
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(a) Hubbert fit to Wyoming
production data

(b) Linear fit to Southern
European production data

(c) Exponential fit to
Caribbean production data

(d) Asymmetric Hubbert
fit to Alabama production
data

(e) Asymmetric linear fit to
Cameroon production data

(f) Asymmetric exponential
fit to Albanian production
data

Figure 2: Fit of models to six regions which the models fit well. In each
graph, production data are in kbbl/y.

duction is in some sense predictable (i.e. not stochastic). Some regions do

not conform to these expectations and have multiple peaks that are sep-

arated by multi-decade time periods, such as in Figure 3(a), while others

have production that is so chaotic that no one of the tested models can be

seen, in practical terms, as more accurate than another, as in Figure 3(b).

It must be emphasized that these regions are not disqualified because the

software cannot fit the models to the data, but that, in practical terms, the

mathematical “good fit” produced to such data means little.

In total, 16 of the 139 regions were disqualified and labeled nonconform-

ing because of these reasons. These disqualified regions were not analyzed

in either the three-model comparison or the six-model comparison. The

disqualified regions include: Arkansas, Illinois, Indiana, New York, Ohio,

Pennsylvania, Virginia, Washington, New England, Middle Atlantic, North-
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(a) Ohio production, a region with mul-
tiple temporally dispersed peaks

(b) Iraq, a region with fundamentally
chaotic production

Figure 3: These production curves, among others, were eliminated from the
comparison process because of fundamental problems in determining a best
fit.

east, Burma, Iraq, France, Philippines, and Poland. In addition, 6 other

regions were classified as borderline-nonconforming, but were still analyzed:

Central Asia, FSU, Saudi Arabia, Southern Asia, Venezuela, and Western

Asia.

After these models are disqualified, we perform the three-model and six-

model comparisons.

Three-model comparison (comparing only symmetric models) For

the three-model comparison, we first analyze the total amount of error over

all points between the best-fitting curve and the data. The most basic nu-

merical measures of overall fit are the sum of squared errors (SSE) and the

root mean square error (RMSE). Unfortunately, these measures do not prop-

erly account for the number of parameters in a model. Any model can be

made more complex by adding parameters, such as the differing rates of in-

crease and decrease used in the asymmetric models in this analysis. More

complex models nearly always fit better when measured by SSE because they

are more flexible. However, the better fit of the more complex model may

or may not be justified by the amount of complexity created by additional
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parameters.

A number of approaches exist to deal with this problem [25]. We use

Akaike’s Information Criterion (AIC) because it allows us to compare mod-

els that are not mathematically “nested” (models are nested when one model

can be written as a simplified version of the other). AIC allows us to com-

pare models of different complexity while accounting for the advantage that

a more complex model has in fitting [25]. The AIC score (actually the cor-

rected AIC score, the AICc score1) is given as follows:

AICc = N · ln
(

SSE

N

)
+ 2K +

2K(K + 1)
N −K − 1

(1)

Where:

AICc = corrected AIC score,

N = number of data points in data series,

SSE = sum of squared errors, and

K = number of model parameters.

The model with the smallest AICc score is the most likely to be the

best-fitting model [25]. We can also calculate how much more one model

is likely to be correct compared to another by using the difference in AICc

scores. Because AIC is based on information theory, not statistics, we cannot

correctly “reject” or “accept” a model as statistically significant. We can

however, determine the probability that one model is correct when compared

to another [25], given by the equation:

Probability =
e−0.5·∆AIC

1 + e−0.5·∆AIC
(2)

Where:
1The AICc is corrected to account for errors that can occur with AIC when the number

of datapoints is small.
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(a) Hubbert fit (b) Linear fit

Figure 4: Fit of two models to production data from Hungary. See residuals
in Figure 5.

∆AIC = (AICc of best-fitting model) - (AICc of second best-fitting

model).

In the results below, we considered a best-fitting model to have “strong

evidence” of being the correct model if it has >99% chance of being the

correct model when compared, using Equation 2, to the second best-fitting

model.

Even a corrected numerical measure of fit, such as AICc cannot tell us

which model fits best. We also must visually inspect the models for goodness

of fit. This is because there are regions where the total numerical error is

minimized by a given model, but there is systematic divergence between the

model and the data, or the best-fitting model is nonsensical (e.g. negative

decline rates resulting in ever-increasing post-peak production).

Thus, in addition to numerical analysis with AICc, all model fits were

visually inspected for goodness of fit. If the best fitting model in each region

does not have strong evidence, as defined above, the residuals of the models

were compared. The residual for each data point is the difference between

what the best-fitting model predicts and the actual value. When comparing

models, a better model fit results in residuals that are (a) smaller in mag-
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(a) Residuals from the Hubbert fit (b) Residuals from linear fit

Figure 5: Residuals from fitting two models to Hungarian production.

nitude, (b) more evenly spread around zero (normally distributed), and (c)

have fewer trends (i.e. fewer long runs of consecutive points above or below

zero) [25].

For some regions it was difficult or impossible to judge if one model or

another fit better. In these cases, the AICc was sufficiently close between

two models so as to not provide strong evidence (probability < 99%), and

inspection of the residuals provided no obvious choice. For this paper, the

best-fitting model in these cases is left undetermined.

As an example, see Figures 4(a) and 4(b), which show the Hubbert and

linear fit for Hungary, a region that was among the most difficult to deter-

mine the best-fitting model. Also see Figures 5(a) and 5(b), which show

the residuals to these fits. AIC favors the Hubbert model, but not strongly

(80% probability). In favor of the linear model, we see smaller maximum

error and less consistent error, as well as a somewhat better fit at peak for

the linear model. Arguments in favor of the Hubbert model include the bet-

ter overall numerical fit (lower AICc score), and that the curve does have

some “rounded” characteristics. In this paper we chose the Hubbert model,

but arguments could be made for classifying this region as undetermined or

linear.
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Six-model comparison (symmetric and asymmetric models) We

compare all six models using a similar method to that used for the compar-

ison for the three symmetric models. Recall that the AICc accounts for the

increased complexity of the asymmetric models and compares this to the

amount of reduction in error produced.

In addition to the 16 regions that are disqualified as nonconforming from

both the three-model and six-model comparisons, additional regions are dis-

qualified from the six-model comparison. We disqualify all regions that lack

sufficient data so as to cause any of the asymmetric models to have difficulty

in fitting the curve. Because the asymmetric models include the rate of de-

cline of the production curve as a parameter, the software cannot determine

values for these parameters without sufficient data beyond a peak in pro-

duction. In total, 49 regions are not included in the six-model comparison

for this reason. Consequently, the six-model comparison is performed with

74 regions (36 state and multi-state, 38 nations and groups of nations).

Methodology to test the symmetry of regional oil production

Another important assumption of Hubbert modeling that has not been

rigourously tested is that oil production is assumed to be symmetric over

time.

In order to test this assumption, we compare best-fitting incline and

decline rates. Only the 74 regions that were included in the six-model com-

parison were used in this test. It is likely that at least a few of these slopes,

fit here as post-peak downslopes, will in the future be realized as tempo-

rary declines in production and not as a final decline. However, the choice

of regions included is also somewhat conservative, such that regions that

are thought to have recently peaked, such as the United Kingdom and Nor-

way, are not included because they do not have enough post-peak data for
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adequate fit.

We conduct two simple tests to gain insight into the best-fitting rates

of increase and decrease. First, we examine the distribution of best-fitting

rates of increase and decrease in the asymmetric exponential model, rinc

and rdec. We then study the distribution of a quantity we will call the rate

difference, which is the difference between the best-fitting rates of increase

and decrease for each region. Thus, the measure of rate difference (∆r) is

defined as:

∆rexponential = rinc − rdec (3)

Methodology to test the quality of the Hubbert fit across re-

gions of different sizes

Some Hubbert theorists have suggested that larger regions may fit the Hub-

bert model more closely, due to a “smoothing” behavior, whereby aberra-

tions in production from differing regions will cancel each other out when

summed. In order to test this, the quality of fit was compared across regions

of different “size.” We test using both the area of regions (area in km2), and

total production to date (in cumulative bbl).

In order to compare fit across different size regions, a “scale-invariant”

measure of fit is required. That is, one needs a measure of fit that is com-

parable across regions as diverse as Arizona (peak production 3,370 kbbl/y)

and Asia (peak production 14,419,387 kbbl/y). SSE and RMSE are poor

measures because the absolute amount of error increases as the amount of

production increases, even if the percentage error is the same. For this rea-

son, a normalized RMSE was used. In this case, RMSE for each region

was divided by the mean production from that region. This normalizes the
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RMSE by the scale of production and makes regions comparable2.

3 Results

Best-fitting model results

One important general result is that 16 regions were disqualified from both

the three-model and six-model comparisons as non-conforming, and 6 more

were classified as borderline non-conforming. The disqualified regions are

not a significant portion of global production (about 3% of 2004 production),

but when we add the borderline non-conforming regions (most importantly

Venezuela, Saudi Arabia and FSU), these regions represent 36% of global

production. That fully a third of global production is not well characterized

by models with a single up-down cycle is a significant result suggesting that

these models are not useful in a number of important cases.

Specific results about the applicability of each of the models are described

below.

Three-model comparison: best fit between symmetric models

In our first comparison we compared the Hubbert, linear, and exponential

models. After the 16 nonconforming regions are disqualified, we compare 123

regions across the three symmetric models. The number of regions in which

each model has the lowest AICc score is shown in Table 4. The number of

these regions that were classified as having strong evidence from comparison

of AICc scores are shown in the second column of Table 4.

After this numerical analysis, any region without strong evidence was

inspected by hand and compared to the other models using visual comparison
2I would like to acknowledge Professor Jim Kirchner of the UC Berkeley Earth and

Planetary Sciences department for his advice on normalizing the RMSE across regions of
different size.
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Table 4: Results of comparison of three symmetric models
Regions which
AICc favors

Regions which
AICc favors with
strong evidencea

Regions in
which model is
best fittingb

Hubbert 63 48 59
Linear 36 23 26
Exponential 24 18 26
Undetermined - - 12
Nonconforming 16 - 16
Total 139 89 139
a - “Strong evidence” is defined as a probability of being the correct model of
greater than 99%. Those without strong evidence are still the most probable
according to AIC.
b - The best fitting regions are determined by combination of AIC analysis
and inspection, as described in Methods.

of the residuals, as described above. The final results of the three-model

comparison are shown in Table 4, with some models marked “undetermined”

if a clear best-fitting model did not exist.

These results suggest that in the three-model comparison, the Hubbert

model fits production curves more frequently than the other two models.

But, many regions (slightly fewer than half) are better represented by the

other two models, suggesting that the Hubbert model is not dominant in its

ability to fit production curves.

Six-model comparison: best fit between all models

Determining the best fit in the six model comparison was performed analo-

gously to determining the best fit across the three symmetric models. After

16 nonconforming and 49 pre-peak regions are disqualified, we are left with

74 regions. The results of the AIC analysis are shown in Table 5. As can be

seen, we again divide the results into models that are favored by comparison

of AICc scores and models that are strongly favored by comparison of AICc

scores.
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Table 5: Results of analysis of regions using all six models
Regions
which
AICc

favors

Regions which
AICc favors
with strong
evidencea

Regions in
which model
is best fitting

Hubbert 2 0 5
Linear 4 0 6
Exponential 7 1 7
Asymmetric Hubbert 16 11 14
Asymmetric Linear 15 6 10
Asymmetric Exponential 30 24 25
Undetermined - - 7
Nonconforming 16 16 16
Disqualified because of
lack of post-peak data

49 49 49

a - In many of the regions the asymmetric and symmetric versions of the
same function are fit with the best and 2nd best AICc score. In many of
these cases, the asymmetric model was only slightly more probable than its
simpler counterpart (60% vs. 40%, for example). In these cases the more
complex model was discarded due to the inherent advantages given by a
symmetric model.

From these AICc results we proceeded to determine the best-fitting model

for each region. As in the three-model comparison, in some regions the model

favored by the AICc is not necessarily the best-fitting model. For regions

without strong evidence (35 regions), the quality of fit and residuals were

inspected. In each region one of six models was chosen as the best fitting

model, or the region is left as undetermined if multiple models appear equally

plausible. The results of the six-model comparison are shown in Table 5.

Symmetry of regional oil production

Here we present results of an analysis of the best-fitting rates of increase and

decrease from the asymmetric exponential model. The distributions of rates

of increase and decrease are shown in Figures 6(a) and 6(b), respectively.

The best-fitting values of rinc and rdec are collected into bins of width .025
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(a) Distribution of
rinc, the best-fitting
exponential rates of
increase. N = 74

(b) Distribution of
rdec, the best-fitting
exponential rates of
decrease. N = 74

(c) Distribution of
rate difference. N =
74

Figure 6: Distributions of best-fitting exponential growth and decay rates
for 74 regions. Note that two outliers are off of the scale of the graph of rinc

at approximately 0.6 and 3 (Greece and Arizona respectively).

Table 6: Properties of rate distributions, N = 74
rinc rdec rate difference

75th percentile 0.133 0.038 0.095
Median 0.078 0.026 0.052
25th percentile 0.056 0.016 0.019
Meana 0.148 0.041 0.108
standard deviation 0.349 0.047 0.327
a - The mean is pulled upward for rinc by a single very high value from
Arizona of nearly 300% growth per year. Thus, the median is likely a more
reliable value

(2.5%). Clearly, the distributions of the best fitting values of rinc and rdec

are quite different, with values of rinc clustered between 0.025 and 0.1 and

values of rdec clustered between 0 and 0.05.

The distribution of the rate difference is shown in Figure 6(c). Note

that the values of the rate difference are highly concentrated above zero,

reinforcing the conclusion that the typical rate of increase is higher in each

region than the rate of decrease in that region. The median and a selected

number of percentiles for these three measures are shown in Table 6.
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Hubbert fit across regions of different size

We plot the results from the numerical measures of fit compared to two

indexes of “size,” namely cumulative production (kbbl) and area (km2),

shown in Figures 7 and 8.

In Figure 7 we plot the results of comparing the quality of fit to the

amount of cumulative production. In Figure 7(a) we see the very strong

relationship in log-log space between an absolute measure of error (RMSE)

and the level of cumulative production. The R2 of this line in log-log space

is 0.963. This should be expected because as the magnitude of production

increases a similar amount of relative error will result in larger absolute error.

In Figure 7(b), however, we see the results of normalizing the error across

regions. Note that after normalization most of the relationship is lost, cre-

ating a widely scattered plot. This line has an R2 in semi-log space of only

0.0374. We can conclude that the normalized RMSE does not strongly scale

with cumulative production, and thus that regions with more cumulative

production are not more correctly described by the Hubbert curve to any

strong degree.

In Figure 8 we plot the results of the Hubbert fit across regions of different

area. In Figure 8(a) we see the results of comparing RMSE to region area.

We see some relationship between area of the region and quality of fit, and the

best-fitting line in log-log space has an R2 of 0.29. Some of this relationship

between size and error is due to the correlation of the area of regions to

the amount of oil production (larger regions were found to have higher oil

production on average than smaller regions). We see that when we normalize
3The straight line in log-log space is give by the equation log(RMSE) = a + b ·

log(Cumulative production). The equation of the best-fitting line is log(RMSE) =
−3.86 + 0.863 · log(Cumulative production in kbbl)

4The straight line in semi-log space is given analogously by Normalized RMSE = a+b ·
log(Cumulative production). The equation of the best-fitting line is Normalized RMSE =
0.415− 0.011 · log(Cumulative production in kbbl)

25



(a) RMSE by cumulative produc-
tion. R2 in log-log space = 0.96

(b) Normalized RMSE by cumula-
tive production. R2 in semi-log
space = 0.037

Figure 7: Relationship of goodness of Hubbert fit to regional cumulative
production.

(a) RMSE by area (km2). R2 in log-
log space = 0.29.

(b) Normalized RMSE by area
(km2). R2 in semi-log space =
0.013.

Figure 8: Relationship of goodness of Hubbert fit to region area.

the error, as in Figure 8(b), and thus remove this potential bias, nearly all

of the relationship is lost, with an R2 of only 0.013. Thus, it appears that

regions of larger area do not adhere to the Hubbert model more strongly

than smaller regions.

4 Discussion and conclusion

It is clear from the results of this analysis that no model fits all historical

production curves from oil producing regions. We should first emphasize
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that all models failed to even crudely match production in 16 regions, and

nearly failed in 6 others. These regions, which in total represent over 30%

of global production, represent failures of all of the studied models, not just

the Hubbert model.

We illustrated that when comparing the three symmetrical models, the

Hubbert model is the most widely useful model, but that somewhat less than

half of the regions are well-described by the linear and exponential models.

We also showed that when asymmetry is allowed in our oil production curves,

that the asymmetrical exponential model becomes the most useful model,

and that no model dominates when we compare all six models.

When we allow for asymmetric models, we note two effects. First, the

asymmetric models trump the symmetric models in most cases. This oc-

curs even when accounting for the additional complexity of the asymmetric

models. This, combined with the evidence of best-fitting rates of increase

and decrease shown in Figure 6, suggest significant asymmetry of produc-

tion. Conclusion: when attempting to understand past production, symmet-

ric models are not satisfactory (we discuss prediction separately below, in

which case symmetric models may well be more useful).

Second, we note that production is significantly asymmetric in only one

direction. As can be seen from Figure 6(c) and column 3 of Table 6, the

rate difference is overwhelmingly positive. In fact, the rate difference is

positive in 67 of the 74 regions studied. The median rate of increase is

7.8% per year, while the median rate of decline is some 5% less at 2.6%.

These data suggest that it is probable that future regions will have more

gentle decline rates than rates of increase. We reiterate: there is simply no

evidence in the historical data that rates of decline will be generally sharper

than rates of increase. This should be taken as comforting news for those

concerned about a quick decline in production causing additional disruption
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beyond that already anticipated for the transition from conventional oil to

substitutes for conventional oil.

Hirsch’s analysis [18], which suggests that the peaks may be sharper than

suggested by the Hubbert model, is well substantiated by the large dataset

used in this analysis. A significant number of regions exhibit have produc-

tion peaks that are much steeper and change from increasing to decreasing

more quickly than the Hubbert model would suggest. This author estimates

that 40-50 of the regions studied could be classified as significantly sharper

around the peak than the Hubbert model suggests. Others would likely

judge differently, but a great number of regions have unarguably followed

such a pointed production path. This behavior partially explains the good

performance of the exponential models in many cases. This should be seen

as important for those interested in the rates of change that will be required

in a transition to alternatives to conventional oil. Further analysis should be

performed to understand how sharpness of the peak in production correlates

with the amount of production in a region, because rapid rates of change are

far more important if they occur in regions with high production.

We should note that this paper only analyzes two assumptions of the

Hubbert method: the functional form of oil production curves and the as-

sumption of symmetry. A significant amount of the information contained

in Hubbert predictions is determined independently of the production func-

tion, by virtue of the estimated ultimate recovery of oil input into the model.

We did not seek to test the effectiveness of methods of predicting future vol-

umes of oil to be recovered, but other analyses, such as those by Nehring

[26, 27, 28] attempt to address these questions. Thus, we can speak to the

assumption of symmetric Gaussian production, but the other foundations of

the theory remain untested by this analysis.

This paper focuses solely on fitting curves to past data to determine
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which functions describe historical regional oil production curves. The ap-

plication of such information to prediction efforts is less certain. Asymmetric

models are more difficult to fit to past production data than symmetric mod-

els, and are particulary so when no peak is evident. Attempting to make

predictions with asymmetric models seems worse still, given that the decline

rate of a region is most simply, and likely best, approximated under uncer-

tainty as being equal to the rate of increase. Simplicity does, and should,

rule the day in prediction, if for no other reason than we do not have the

information to justify more complex approaches. One possible methodology

to take advantage of asymmetry would be to model the rate of decline in

each region at a rate somewhat more gentle than the rate of incline.

This at last brings us to an important subject: oil depletion and the

nature of predictability. First, this paper should not be misunderstood as

testing the importance or existence of depletion of conventional oil, but

should instead be understood as testing our methods of predicting this very

real phenomenon. Second, it is important to note that Hubbert was, perhaps

wisely, not wedded to his methodology. He states in Nuclear energy and the

fossil fuels, p. 9, that

For any production curve of a finite resource of fixed amount, two

points are known at the outset, namely that at t = 0, and again at

t = ∞...the production rate must begin at zero, and then after passing

through one or several maxima, it must decline again to zero [emphasis

added].

With this in mind, as well as the basic fact that the area under the produc-

tion curve equals cumulative production, he suggested that we could draw a

“family of possible production curves.” [19].

Perhaps it is useful to consider that, had history progressed differently

and Hubbert used a linear model rather than a bell-shaped model, he would
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likely still have been hailed as correct due to the extremely good fit of US

production to the linear model as well as the Gaussian model. Or, had

Hubbert analyzed a different region than the US, he would have almost

certainly been less correct, simply because US production is quite symmetric

compared to the global average (rate difference = 0.024 rather than the

median of 0.05).

Methodological purity was not advocated by Hubbert, is not justified by

the evidence presented here, and is, in the end, counter-productive. These

data show that it is incorrect to emphasize that a “narrow” Hubbert method-

ology is correct, or to suggest that one’s predictions have great accuracy

given the uncertainties involved. Such a narrow methodology acts to draw

attention away from the issue of oil depletion and toward the issue of the

validity of a particular method. Such a focus also draws attention away from

more important and fundamental points of contention between the more pes-

simistic Hubbert modelers and economists, including the nature of resource

scarcity, resource substitution, and how the energy system will or will not

act to replace conventional oil after the inevitable peak in conventional oil

production.

An over-emphasis on making projections with the traditional Hubbert

methodology is not well-justified, and hinders progress in dealing with oil

depletion. It would be more productive for Hubbert theorists to move from a

“narrow” Hubbert methodology based solely on fitting symmetric Gaussian

or logistic curves to production data to a more “broad” Hubbert methodol-

ogy. A broad Hubbert methodology would present evidence that depletion

of conventional oil is inevitable and becoming rapidly more important, with-

out focusing its energies on a single functional form for production curves.

Such a methodology would acknowledge the probability of a multitude of

production curve shapes, use multiple types of evidence, and shun repeated
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attempts to project the year of peak production. Such a methodology would

move us forward by focusing our attention on understanding and mitigat-

ing the social, economic, and environmental consequences of the inevitable

transition away from conventional oil.
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5 Appendix A: Definitions of regions

Regional definitions are available at http://abrandt.berkeley.edu/hubbert/

6 Appendix B: Mathematical formulation of six
tested models.

Symmetric models

Hubbert The Gaussian Hubbert model is defined as follows:

P (t) = Pmax · e

(
−(t−Tpeak)2

2σ2

)

(4)

Where:
P (t) = production in year t,
Pmax = maximum production (peak production),
Tpeak = year of peak production, and
σ = standard deviation of the production curve.

Linear The linear function is defined as follows:

for t ≤ Tpeak, P (t) = S · (t− Tstart) (5)
for t > Tpeak, P (t) = P |Tpeak

− S · (t− Tpeak) (6)

Where:
P (t) = production in year t,
Tstart = date of first production,
Tpeak = year of peak production, and
S = Slope of production curve (units per year).

Exponential The exponential function is formulated as follows:

for t ≤ Tpeak, P (t) = er·(t−Tstart) (7)

for t > Tpeak, P (t) = P |Tpeak
· e−r·(t−Tpeak) (8)

Where:
P (t) = production in year t,
Tstart = year of first production (year in which production = 1 bbl),
Tpeak = year of peak production, and
r = rate of change (both increasing and decreasing, percent per year).
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Asymmetric models

Asymmetric Hubbert This function is based on the same Gaussian
curve as used in the Hubbert analysis, but allows a different standard devi-
ation on the increasing and decreasing sides of the production curve5. This
model is defined as a compound function, with the basic Gaussian function
intact in function P (t):

P (t) = Pmax · e
−(t−Tpeak)2

2f(t)2 (9)

Where f(t) is the sigmoid function that changes the standard deviation
in the vicinity of t = Tpeak:

f(t) = σdec − σdec − σinc

1 + ek(t−Tpeak)
(10)

Where:
P (t) = production in year t,
Pmax = maximum production (peak production),
Tpeak = year of peak production,
σinc = left side standard deviation (width of increasing side of production

curve),
σdec = right side standard deviation (width of decreasing side of produc-

tion curve), and
k = the rate of change from left-side to right-side standard deviation.

The sigmoid graph is shown in Figure 9. In this example figure, σinc = 10,
σdec = 20, Tpeak = 1950, and k = 1. As can be seen by inspection from
equation 10, if t is much much smaller than Tpeak, f(t) → σinc, and that as
t gets much larger than Tpeak, f(t) → σdec. At t = Tpeak, f(t) is equal to the
average of the two values, or f(t) = 1/2(σinc + σdec).

The asymmetric Hubbert model has either four or five parameters to be
fit, depending on if the value k is to be fit. For all tests in this paper, k
is fixed at the value 1, making it a four-parameter function, like the other
asymmetric functions.

Asymmetric linear The asymmetric linear is defined similarly to the
symmetric linear model, but with a flexible downslope:

for t ≤ Tpeak, P (t) = Sinc · (t− Tstart) (11)
for t > Tpeak, P (t) = P |Tpeak

− Sdec · (t− Tpeak) (12)

Where:
5I would like to acknowledge the assistance of Anand Patil in developing the asymmetric

Hubbert model
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Figure 9: Sigmoid function that governs standard deviation shift in asym-
metric Hubbert peak. For this figure, σinc = 10, σdec = 20, and k = 1.
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P (t) = production in year t,
Tstart = year of first production,
Tpeak = year of peak production,
Sinc = Slope on increasing side of production curve (units per year), and
Sdec = Slope on decreasing side of production curve (units per year).

Asymmetric exponential The asymmetric exponential model is formu-
lated analogously to the symmetric exponential curve:

for t ≤ Tpeak, P (t) = erinc·(t−Tstart) (13)

for t > Tpeak, P (t) = P |Tpeak
· e−rdec·(t−Tpeak) (14)

Where:
P (t) = production in year t,
Tstart = year of first production (year where production = 1bbl),
Tpeak = year of peak production,
rinc = rate of increase (percent per year), and
rdec = rate of decrease (percent per year).
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