Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 2 of 2)



Endogenous Structural Change and Climate Targets Modeling Experiments with Imaclim-R

Renaud Crassous, Jean-Charles Hourcade, Olivier Sassi

Year: 2006
Volume: Endogenous Technological Change
Number: Special Issue #1
DOI: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI1-13
View Abstract

Abstract:
This paper envisages endogenous technical change that results from the interplay between the economic growth engine, consumption, technology and localization patterns. We perform numerical simulations with the recursive dynamic general equilibrium model Imaclim-R to study how modeling induced technical change affects costs of CO2 stabilization. Imaclim-R incorporates innovative specifications about final consumption of transportation and energy to represent critical stylized facts such as rebound effects and demand induction by infrastructures and equipments. Doing so brings to light how induced technical change may not only lower stabilization costs thanks to pure technological progress, but also trigger induction of final demand�effects critical to both the level of the carbon tax and the costs of policy given a specific stabilization target. Finally, we study the sensitivity of total stabilization costs to various parameters including both technical assumptions as accelerated turnover of equipments and non-energy choices as alternative infrastructure policies.



Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change

Malte Schwoon and Richard S.J. Tol

Year: 2006
Volume: Volume 27
Number: Number 4
DOI: 10.5547/ISSN0195-6574-EJ-Vol27-No4-2
View Abstract

Abstract:
The impact of induced technological change (ITC) in energy/climate models on the timing of optimal CO2-abatement depends on whether R&D or learning-by-doing (LBD) is the driving force. Bottom-up energy system models employing LBD suggest strong increases in optimal early abatement. In this paper we extend an existing top-down model supporting this view according to the notion that socio-economic inertia interferes with rapid technological change. We derive analytical results concerning the impact of inertia and ITC on optimal initial abatement and show a wide range of numerical simulations to illustrate magnitudes. Inertia now dominates the timing decision on early abatement, such that LBD might even have a negative effect on early abatement and the impact of R&D is limited. However, ITC still reduces costs of stabilizing atmospheric CO2-concentrations considerably.





Begin New Search
Proceed to Checkout

 

© 2024 International Association for Energy Economics | Privacy Policy | Return Policy