Search

Begin New Search
Proceed to Checkout

Search Results for All:
(Showing results 1 to 2 of 2)



How Does Climate Policy Affect Technical Change? An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model

Carlo Carraro, Emanuele Massetti, Lea Nicita

Year: 2009
Volume: Volume 30
Number: Special Issue #2
DOI: 10.5547/ISSN0195-6574-EJ-Vol30-NoSI2-2
View Abstract

Abstract:
This paper analyses whether and how a climate policy designed to stabilize greenhouse gases in the atmosphere is likely to change the direction and pace of technical progress. The analysis is performed using an upgraded version of WITCH, a dynamic integrated regional model of the world economy. In this version, a non-energy R&D sector, which enhances the productivity of the capital-labor aggregate, has been added to the energy R&D sector included in the original WITCH model. We find that, as a consequence of climate policy, R&D is re-directed towards energy knowledge. Nonetheless, total R&D investments decrease, due to a more than proportional contraction of non-energy R&D. Indeed, when non-energy and energy inputs are weakly substitutable, the overall contraction of the economic activity associated with a climate policy induces a decline in total R&D investments. However, enhanced investments in energy R&D and in the energy sector are found not to �crowd-out� investments in non-energy R&D.



Energy R&D Investments and Emissions Abatement Policy

Di Yin and Youngho Chang

Year: 2020
Volume: Volume 41
Number: Number 6
DOI: 10.5547/01956574.41.6.dyin
View Abstract

Abstract:
The study examines the interactions of the energy R&D investments and the CO2 abatement policy using an endogenous energy R&D climate-economy model. Energy R&D investments affect the carbon emissions directly through efficiency improvements and indirectly by changing the comparative advantages of resources. This study considers the R&D investments in energy efficiency and low-carbon technology and explores how energy R&D investments accelerate the energy transition from fossil fuels to low-carbon technology. Three policies of carbon abatements are considered, namely, the optimal policy, the 2 �C policy, and the 1.5 �C policy. From the perspectives of benefits and costs, the optimal policy leads to the least abatement costs compared to the other two abatement policies. This study indicates that the more restrictive the abatement policy is, the more severe economic damage is caused in the short run, but more economic welfare is gained in the long run. Keywords: Energy R&D investments, Emissions abatement policy, Energy efficiency, Backstop technology, Energy substitution, Cost-benefit analysis, Climate change





Begin New Search
Proceed to Checkout

 

© 2021 International Association for Energy Economics | Privacy Policy | Return Policy