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Competitive Energy Storage and the Duck Curve

Richard Schmalenseea

abstract

Power systems with high penetrations of solar generation need to replace solar 
output when it falls rapidly in the late afternoon—the duck curve problem. Storage 
is a carbon-free solution to this problem. This essay considers investment in gen-
eration and storage to minimize expected cost in a Boiteux-Turvey-style model of 
an electric power system with alternating daytime time periods, with solar gen-
eration, and nighttime periods, without it. In the most interesting cases, if energy 
market prices are uncapped, all expected cost minima are long-run competitive 
equilibria, and the long-run equilibrium value of storage capacity minimizes ex-
pected system cost conditional on generation capacities.
Keywords: Electricity, Storage, Solar, Arbitrage, Renewable, Duck curve, 
Competition
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1. INTRODUCTION

In 2008, modelers at the National Renewable Energy Laboratory predicted that increased 
penetration of behind-the-meter solar photovoltaic (PV) generation in the area served by the Cali-
fornia Independent System Operator (CAISO) would depress net demand in the middle of the day 
and increase ramping requirements in the late afternoon (Denholm et al., 2008). A few years later, 
the predicted hourly pattern of grid generation net of wind and (especially) solar was christened 
“the duck curve.” As PV penetration has increased, the duck’s back in mid-day has deepened, and a 
greater increase in output from other sources has been required in late afternoons, when solar gen-
eration drops off and residential load increases (in what can be described as the duck’s neck).1 The 
traditional solution to this problem would be to build and use more gas turbines or combined cycle 
plants that can increase output rapidly.

However, building more fossil-fueled generators is inconsistent with the goal in California 
and elsewhere of reducing carbon dioxide emissions. As the costs of storage, particularly lithium-ion 
battery storage, have declined, storage has emerged as a potentially attractive, carbon-free alterna-
tive way of offsetting diurnal declines in solar generation (Patel, 2018). And, since the promulgation 
of statutory requirements in 2010, in part to facilitate the integration of solar and other variable 
renewable generation,2 the California Public Utilities Commission has been requiring load-serving 

1. See, for instance, Figure 9 in Joskow (2019, p. 314).
2. Storage can also perform other functions in electric power systems. Depending on the technology employed, storage 

facilities can provide frequency regulation, deferral of wires investment, and reducing the cost of spinning reserves. For dis-
cussions, see Giuletti et al. (2018) and U.S. Government Accountability Office (2018), and for a worked example of a storage 
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entities to procure storage (Petlin et al. 2018, California Public Utilities Commission n.d.). Storage 
targets have also recently been established in Massachusetts, Nevada, New Jersey, New York, and 
Oregon, and they are under consideration in other states.

This state-level reliance on mandates contrasts with an apparent preference at the fed-
eral level to rely on competition to drive investment in storage facilities. As solar penetration has 
increased, intra-day price differences have also increased.3 This suggests that with sufficient solar 
penetration, competitive storage providers could find it profitable to buy at mid-day when prices are 
low and sell a few hours later as solar generation begins to drop off and prices become high, thus 
mitigating or perhaps solving the duck curve problem. The U.S. Federal Regulatory Commission 
(2018) has recently issued Order 841, which is intended to open wholesale energy markets (and 
other wholesale markets) to merchant storage providers.4 Similarly, The European Union’s Clean 
Energy Package, most recently modified in 2019, calls for competitive supply of storage (Glowacki, 
2020) and, in contrast to California’s mandate, restricts ownership by distribution system opera-
tors. In both the U.S. and the EU, efforts are ongoing to reach agreement on exactly how to define 
markets and establish tariffs to ensure that storage providers have access to wholesale markets on 
appropriate terms.5

The FERC and EU policies rest on the presumption that energy markets can provide at least 
approximately optimal incentives for competitive investment in storage as well as generation.6 This 
essay explores the validity of this presumption in the context of the duck curve by investigating the 
properties of a Boiteux (1960, 1964)-Turvey (1968)-style model of an electric power system aug-
mented with the addition of storage.7 Models in this tradition, and the model developed here, assume 
constant returns to scale, stochastic and (generally) inelastic demand, and multiple dispatchable 
generation technologies without significant startup costs or minimum generation levels. If shortages 
occur, the system is assumed not to collapse, and price is assumed to rise to the value of lost load.8

There are a number of ways that storage has been added to models of this sort. In the ear-
liest formal treatments of storage in this context of which I am aware, Gravelle (1968) and Nguyen 
(1968) consider two-period—peak and off-peak—models and simply assume that an unlimited 
amount of the quantity being sold can be transferred between adjacent periods at a constant per-unit 
cost. Several authors, including Steffen and Weber (2013) and Korpås and Botterud (2020) have 
added storage to timeless Boiteux-Turvey-style models by assuming that power can be purchased 

project that could perform multiple functions, see Sidhu et al. (2018). The focus here is exclusively on the use of storage for 
energy arbitrage to solve the duck curve problem and related problems posed by the variability of renewable energy resources.

3. See, e.g., Figure 10 in Joskow (2019, p. 314).
4. In addition, at the U.S. federal level, storage facilities that are charged only by solar generators are eligible for a 30% 

investment tax credit. 
5. See, e.g., https://www.dwt.com/blogs/energy--environmental-law-blog/2020/06/federal-energy-storage- regulatory-

activity 
6. A number of studies have investigated the profitability of energy arbitrage under various cost assumptions and ob-

served price trajectories; see, e.g. Salles et al. (2017) and Giuletti et al. (2018). The usual finding is that arbitrage profits do not 
cover the capital costs of storage facilities under current price patterns. This finding sheds no light on the general optimality 
of the investment incentives that would be provided by energy markets when storage is available and its deployment is profit-
able at the margin because energy prices are more volatile than at present.

7. See Dréze (1964) for an elegant exposition of Boiteux’ work, originally written in the early 1950s, and see Joskow 
(1976) for a discussion of closely related later work. Joskow and Tirole (2007) extend this literature substantially. 

8. See Joskow and Tirole (2007) on this assumption, to which I return in Section 5. If energy prices are capped below 
the value of lost load, as seems to be the case in many real markets, investment incentives for generation are inadequate; see 
Joskow (2007, 2008) for discussions. “Capacity mechanisms” of various sorts have been added to a number of systems in the 
U.S. and the EU to deal with this “missing money” problem. 

https://www.dwt.com/blogs/energy--environmental-law-blog/2020/06/federal-energy-storage-regulatory-activity
https://www.dwt.com/blogs/energy--environmental-law-blog/2020/06/federal-energy-storage-regulatory-activity
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whenever the price of energy is low and resold whenever the price is high. This amounts to assum-
ing that energy storage capacity is effectively infinite, since low-price and high-price periods may 
be far apart in time. Other authors, including Crampes and Trochet (2019), Brown and Reichenberg 
(2020) and Junge et al. (2021) have introduced time explicitly but assumed perfect foresight. While 
these models yield a number of general results regarding investment in and operation of storage 
facilities under competition, the perfect foresight assumption is strong and eliminates the precau-
tionary demand for storage. Relaxing that assumption, however, requires explicitly modeling the 
relevant stochastic processes, as demonstrated by Geske and Green (2019). This limits the general-
ity of results that can be obtained. In perhaps the model closest to the one presented here, Helm and 
Mier (2018) consider a dynamic model with a constant demand curve and non-stochastic renewable 
output that follows a regular cyclic trajectory.

To focus on a (necessarily) simplified version of the duck curve problem, the model con-
sidered here has alternating periods of two types, labeled daytimes and nighttimes, corresponding 
roughly to the duck’s back and its neck. Renewable generation has positive, stochastic output only 
in daytime periods. Gas generation, which, for simplicity, stands in for the whole suite of dispatch-
able generation technologies, is assumed to be available in both daytime and nighttime periods. 
Short-term storage can be installed at a constant cost per unit of capacity, and storage involves a 
constant fractional round-trip loss of energy.9 Demand in both days and nights is stochastic, constant 
within periods, and perfectly inelastic.10 Section 2 presents these assumptions in more detail and 
introduces the notation used in what follows.

Under constant returns, competitive generators’ operating rules are simple: produce if and 
only if market price of energy is greater than or equal to marginal cost. In general, optimal charging 
or discharging of storage under competition depends on the current energy market price, the amount 
of energy in storage, and expectations regarding future energy prices. In general, it does not seem 
possible describe the behavior of competitive storage suppliers when storage is not fully discharged 
in each nighttime period without additional assumptions or (per Geske and Green (2019)) resorting 
to numerical methods. In the context of the duck curve, however, at least in the near term, imposing 
the restriction that storage is fully discharged in each nighttime seems reasonable. Doing so leads to 
three possible regimes relating the marginal cost of gas generation to expected nighttime prices, and 
Section 3 derives the three corresponding competitive operating rules that storage suppliers would 
follow. Section 3 also presents a sufficient consistency condition for each rule: if that condition 
holds and if competitive storage suppliers follow the corresponding operating rule, they will in fact 
find it optimal to sell all stored energy each nighttime.

Section 4 considers minimization of expected total cost conditional on the algebraically 
simplest competitive operating rule derived in Section 3. Parallel analyses under the other two 
regimes are summarized in Sections A and B of the online Appendix. Section 5 discusses some 
implications of the results of this analysis.

9. This simple description of storage costs is reasonable for battery storage of a few hours duration with negligible 
self-discharge and negligible variable operating and maintenance costs. In the most general case, seven parameters are neces-
sary to describe storage costs, even under constant returns to scale (Junge et al., 2021).

10. Joskow and Tirole (2007) and a number of other papers assume that at least some demand is price-sensitive and con-
sider welfare maximization rather than cost minimization. I assume perfectly inelastic demand here for the sake of simplicity
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2. ASSUMPTIONS AND NOTATION

The daytime and nighttime periods in each day are assumed to be of equal length for 
convenience, and the probability distributions governing demand within daytime and nighttime pe-
riods and the output of renewable generation are assumed to be independent. Independence rules 
out weather-induced correlations, among other things, but it is not clear how to relax this strong 
assumption and maintain tractability. There are four technologies with constant returns to scale. 
Their capacities are initially assumed to be determined by a benevolent social planner interested in 
minimizing expected total cost. After the implications of that assumption have been explored, we 
consider whether a continuum of risk-neutral, perfectly competitive firms would provide the same 
capacities in long-run equilibrium:

Gas stands in for all dispatchable fossil and nuclear technologies, has capacity G, per-
day unit capacity cost CG, and per-MWh operating cost c.

Renewables have capacity R, per-day unit capacity cost CR, and zero operating cost. 
Maximum renewable output is zero during the night and is equal to θR MWh during 
the day, where θ is a random variable with smooth distribution function H(θ) on [θ,1], 
with θ > 0, and density function h(θ).11 It is assumed that renewable generation can be 
costlessly curtailed whenever daytime demand is less than available renewable supply.

Scarcity operates when load exceeds capacity and there is lost load. Scarcity involves 
zero capital cost and has per-MWh variable cost v, the value of lost load. The probability 
of scarcity is assumed to be positive in both periods. (It must be positive in at least one 
period for gas to recover its capital cost under competition.12)

Storage has capacity S, per-day unit capacity cost CS, and round-trip efficiency η < 1. 
This paper focuses on the empirically interesting case (for at least some time to come) 
S < θR. The (stochastic) amount of energy in storage at the end of a daytime period is s.

Efficiency requires that the capital costs all include appropriately discounted disposal costs, includ-
ing environmental impact costs, and the operating cost of dispatchable generation must include 
the associated environmental costs. As an accounting convention, the loss of energy due to storage 
occurs when storage is discharged, not when it is charged.

Cost parameters are assumed to satisfy the following inequalities:

, , .G R RC C c v and C c< < <  (2.1)

The first two of these are familiar: gas has lower capital cost than renewables, and the value of lost 
load exceeds the incremental cost of gas generation. The third is necessary for gas to be economical. 
Gas capacity is necessary to meet demand at night when renewable generation is not available, so 
for it to be efficient for any renewable capacity to be installed and used during the day, the total per-
MWh cost of renewable generation, CR, must be less than the incremental cost of gas generation 
from existing capacity, c. A high value of c is most naturally interpreted as reflecting a substantial 
price of carbon emissions.

11. This follows Llobet and Padilla (2018) and essentially assumes perfect correlation among the outputs of renewable 
generating facilities. Solar generation is obviously zero at night; the assumption of a positive minimum daytime capacity 
factor seems reasonable.

12. For clear discussions, see Joskow (2007, 2008).
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The two periods in each day are as follows:

Daytime load before storage purchases (i.e., final demand), LD, is distributed according 
to smooth distribution function FD(L) on [0,∞] with density fD(L).

Nighttime load before storage sales (i.e., final demand), LN, is distributed according to 
smooth distribution function FN(X) on [0,∞], with density fN(X).

I assume that CS is low enough, η is high enough, and nighttime load is on average high enough 
relative to daytime load that some energy arbitrage via storage is economic, and I thus concentrate 
on internal minima of expected system cost.

The values of R, G, and S are initially assumed chosen by a benevolent planner to minimize 
expected system cost, including the cost of lost load, conditional on competitive behavior by the 
holders of those assets. At the start of every daytime period, values of LD and θR are realized. Stor-
age suppliers then decide how much energy to carry into the next nighttime, s, based on the observed 
daytime market price of energy, PD, and the expected nighttime price of energy, .NP . At the start of 
every nighttime period, the value of s from the previous daytime is revealed, the value of LN is real-
ized, and the actual nighttime price of energy, PN, is determined. I first describe minima of expected 
system cost and then consider their relation to long-run competitive equilibria.

3. COMPETITIVE OPERATING RULES FOR STORAGE

As noted above, it seems that to make the analysis of storage operations tractable without 
additional restrictive assumptions, we must require that storage be fully discharged during each 
nighttime period, so that each daytime period begins with zero stored energy.13 Since this model is 
an abstract representation of systems, like the CAISO system, in which there is an abundance of 
solar generation during most daytimes and robust demand in the evening when solar output falls to 
zero, this seems the most interesting case.

There are two ways competitive storage suppliers could end a nighttime period with pos-
itive stored energy. First, they could have begun the period with positive stored energy, s, and en-
countered perfectly inelastic demand, LN, that was less than ηs. They would then sell LN and carry 
(s-LN/η) into the next daytime.14 The simplest way to rule this out is to assume that the minimum 
nighttime demand exceeds the maximum supply from storage:

( ) 0 , .N N NF L for L X where X Sη= ≤ >  (3.1)

Since S is endogenous, this is not fully satisfactory. But the notion of a non-trivial, positive mini-
mum nighttime demand is plausible in general and plainly so in the duck curve context.

The second way competitive storage suppliers might end a nighttime period with positive 
stored energy could occur if the energy market price were c and gas capacity were not exhausted. 

13. Let Γ(s) be the end-of-daytime value of an incremental unit of stored energy when storage contains s MWh, and 
let Δ(y) be the end-of-nighttime value of an incremental unit of stored energy when storage contains y MWh. If storage 
is fully discharged every nighttime, Γ(s) is just η times the expected nighttime price, exactly as assumed below. Without 
that assumption, however, Γ(s) would also reflect the fact that under some nighttime conditions, discussed in the text, it 
would more profitable not to discharge fully, but rather to carry some energy into the next daytime. The nighttime decision 
of competitive storage suppliers involves comparing Δ(y), which would depend on expected daytime conditions, with the 
marginal nighttime price of energy. In this general case, it is not apparent how to relate the two value functions involved to 
the primitives of the model, or even to each other.

14. Recall the convention that energy losses occur when storage is discharged, not when it is charged.
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Depending on expectations regarding daytime prices, they might find it optimal to purchase energy 
at c and carry it into the next daytime. The marginal value of energy purchased to carry forward in 
this fashion is clearly non-increasing, so to rule out this behavior it suffices to rule out buying and 
carrying forward the first marginal unit. As discussed below, the conditions ruling this out, (3.3), 
(3.4), and (3.6), are specific to each of the three possible operating regimes. Unfortunately, like 
(3.1), these conditions also involve endogenous variables.

If full nighttime discharge is optimal, a competitive supplier of storage would only add to 
charge in the daytime if the marginal cost of doing so did not exceed the expected nighttime revenue 
per unit stored, which is η times the expected nighttime price. Because nighttime demand is per-
fectly inelastic, the expected nighttime price is just the expected marginal cost of supply:

[ ]( , ) ( ) 1 ( ) .N N NP G s cF G s v F G sη η= + + − +  (3.2a)

By assumption (3.1), stored energy alone is never sufficient to meet demand. With probability 
FN(G+ηs), stored energy plus gas is sufficient, and there is no shortage. Because increases in gad 
capacity and stored energy shift the nighttime supply curve to the right, the expected price falls with 
G and s:

( , ) [ ( , ) ]

( ) ( ) 0.
N N

N

P G s s P G s G

v c f G s

η

η η

∂ ∂ = ∂ ∂

= − − + <
 (3.2b)

In what follows, dependence of NP  on G is generally suppressed to reduce notational clutter.
If all stored energy is to be sold at night regardless of price, a risk-neutral competitive stor-

age supplier would store incremental energy during the day if the per-unit cost of doing so exceeded 
(0).NPη  From (3.2a), (0)NP  is always between c and v, the two possible nighttime prices when there 

are no sales from storage, but η times this quantity may be above or below c. There are thus three 
possible daytime regimes, listed in order of increasing analytical complexity:

1. ( ) (0) .N NP S P cη η< <
2. ( ) (0).N Nc P S Pη η< <
3. ( ) (0).N NP S c Pη η< <

It follows from the discussion above that the daytime competitive demand curve for energy 
from final demand and competitive storage suppliers is vertical at LD (no demand from storage) 
for prices above (0),NPη  declines to (LD+S) for prices between (0)NPη  and ( ),NP Sη  and is vertical at 
(LD+S) for lower prices (storage completely filled). This shape is illustrated in Figure 1, where PD 
is the daytime energy price, and QD is the corresponding quantity demanded. Using this demand 
curve we can now describe the daytime market and competitive determination of s under each of 
these regimes.15

Regime 1: ( ) (0) .N NP S P cη η< <  Under this regime and the assumption of full nighttime dis-
charge, competitive storage suppliers will charge as much as possible as long as the daytime market 
price is less than c, so only zero-marginal-cost output from renewables is stored. Competitive be-
havior determines the demand from storage, s, gas output, marginal operating cost, and the market 
price of energy, PD, as functions of the relationship between final demand, LD, renewable generation, 

15. Each operating rule developed below is optimal for a particular regime, but the operating rule followed by storage 
suppliers will affect the expected nighttime price function and could in some cases thereby alter the regime. It is not clear 
how to rule out this sort of inconsistency as a general matter. 
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and the capacities of gas generation and storage. Maintaining the assumption S < θR, this regime 
implies a competitive operating rule with four daytime cases:

Case s Gas Output Marginal Cost PD

(a) LD ≤ θR–S S 0 0 0

(b) θR–S ≤ LD ≤ θR θR–LD 0 0 ( )N DP R Lη θ −

(c) θR ≤ LD ≤ θR+G 0 LD–θR c c

(d) θR+G ≤ LD 0 G v v

In case (a) there is sufficient renewable output both to satisfy final demand and to charge storage to 
capacity without requiring gas generation. In case (b), charging is curtailed as necessary to avoid 
calling on gas generation and driving price above (0).NPη  Marginal operating cost remains at zero, 
but the market price of energy is bid up by competitive storage to the expected value of additional 
nighttime sales, as illustrated in Figure 2. In case (c) final demand is high enough that gas is neces-
sarily on the margin, and both the marginal operating cost and the energy price are c. No charging 
occurs. Case (d) involves shortage, and the system marginal cost and price are the value of lost load, 
so there is, again, no charging.

Given the operating rule just described, suppose a competitive storage supplier considers 
storing a unit of energy at night at a cost of c for sale the next day. For this to be unprofitable, c must 
exceed η times the expected value of PD the next day. Using the upper bound on the energy price in 
case (b), c, a sufficient condition for storage at night at a cost of c to be unprofitable is

[ ]
[ ]

1 ( ) ( )
( ) .

1 ( )
D D

D

c F R G F R S
h d c

v F R Gθ

θ θ
η θ θ

θ

+ − −
<

+ − +

 
 
 

∫  (3.3)

Figure 1: The Daytime Competitive Demand for Energy
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If (3.1) and (3.3) are satisfied, storage will be empty at the start of every daytime period under com-
petition, as assumed. Since η < 1, (3.3) will be satisfied unless the probability of a daytime shortage, 
the expected value of [1–FD(θR+G)], is sufficiently high.

Regime 2: ( ) (0).N Nc P S Pη η< <  There are, again, four cases under this configuration of 
costs and expected prices:

Case s Gas Output Marginal Cost PD

(a) LD ≤ θR–S S 0 0 0

(b) θR–S ≤ LD≤ θR+G–S S LD–(θR–S) c c

(c) θR+G–S ≤LD≤ θR+G θR+G–LD G c ( )
N D

P R G Lη θ + −

(d) θR+G ≤ LD 0 G v v

In cases (a) and (b), there is sufficient capacity both to satisfy final demand and to charge storage 
fully without driving the energy price above c. The marginal generating cost is zero in case (a), and 
in case (b) it is c because gas is on the margin. In case (c), storage cannot be fully charged with-
out driving the energy price to v. As in case (b) under regime 1, competitive storage suppliers bid 
the energy price above marginal cost, c, as illustrated in Figure 3. Finally, in case (d), there is an 
unavoidable shortage, marginal cost and the energy price are the value of lost load, v, and storage 
demand is reduced to zero.

Using the upper bound on price in case (c), v, the reasoning that let to condition (3.3) yields 
a sufficient condition that rules out the profitability of purchasing energy at night at a price of c and 
reselling the next day under regime 2:

[ ]
[ ]

1 ( ) ( )
( ) .

1 ( )
D D

D

c F R G S F R S
h d c

v F R G Sθ

θ θ
η θ θ

θ

+ − − −
<

− + −

 
 
 

∫  (3.4)

As before, the probability of a daytime shortage must not be too high.

Figure 2: Equilibrium in Regime 1, Case (b)
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Regime 3: ( ) (0).N NP S c Pη η< <  The competitive operating rule implied by this regime is 
a bit more complicated than those under Regimes 1 and 2:

Case s Gas Output Marginal Cost PD

(a) LD ≤ θR–S S 0 0 0

(b) θR–S ≤ LD≤ θR–s̃ θR–LD 0 0 ( )
N D

P R Lη θ −

(c) θR–s̃≤LD≤θR+G–s̃ s̃ LD–(θR–s̃) c η –PN  (s̃)

(d) θR+G–s̃≤LD≤ θR+G R+G–LD G c  ( )
N D

P R G Lη θ + −

(e) θR+G ≤ LD 0 G v v

Here s̃  is implicitly defined by

( , ).Nc P G sη=   (3.5a)

Increases in G reduce the expected nighttime price and thus reduce the amount of energy it is prof-
itable to store for nighttime sale when its cost is c:

( , ) 1
0.

s G c
G η

∂
= − <

∂



 (3.5b)

This follows from equation (3.2b).
In case (a), final demand plus S is less than renewable output, so storage is fully charged, 

and the energy price is zero. In case (b), as in case (b) under regime 1, total demand at a price of zero, 
(LD+S), exceeds renewable output. Marginal operating cost remains at zero, but the market price 
of energy is bid up by competitive storage suppliers to the expected value of incremental nighttime 
sales. This resembles the situation illustrated in Figure 2, except that (0)NPη  exceeds c here. In case 
(c), illustrated by Figure 4, gas is on the margin, and storage is limited to s̃ < S because additional 
storage would have negative expected profit. In case (d), which resembles case (c) under Rule 2, 
which is illustrated by Figure 3, marginal operating cost is c, but price is driven above c by compe-
tition among storage suppliers. Finally, in case (e), final demand exceeds renewable output plus gas 

Figure 3: Equilibrium in Regime 3, Case (c)
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capacity, there is a shortage, and storage is not charged. Note that storage capacity is fully utilized 
only in case (a).

Using upper bounds on energy prices in cases (b) and (d) and the reasoning that led to con-
ditions (3.3) and (3.4), a sufficient condition for purchasing energy at night at a cost of c and storing 
it for resale the next day to be unprofitable is

[ ]
[ ]

1 ( ) ( )
( ) .

1 ( )
D D

D

c F R G s F R S
h d c

v F R G sθ

θ θ
η θ θ

θ

+ − − −
<

+ − + −

 
 
 

∫




 (3.6)

Because this condition employs two upper bounds on prices, it is likely considerably stronger than 
necessary.

4. OPTIMA AND EQUILIBRIA UNDER REGIME 1

This section analyzes minimization of expected total cost conditional on competitive stor-
age operation under Regime 1. We first evaluate expected system cost as a function of R, G, and 
S and then compare the conditions for minimization of that function with conditions for long-run 
competitive equilibrium.

This analysis is algebraically simpler than but parallel to the analyses conditional on Re-
gimes 2 and 3, which are sketched in the online Appendix. Equation numbering in the Appendix 
tracks the numbering in this section to facilitate comparisons. The results in the Appendix are com-
pared with those obtained here in Section 5.

It follows from the four cases under regime 1 that the expected amount of energy in storage 
at the end of a daytime (and the start of a nighttime) is

1

( ) ( ) ( ) ( ) ( ) .
R

D D
R S

E s F R S S R L f L dL h d
θ

θ θ

θ θ θ θ
−

= − + −
 
 
 
∫ ∫  (4.1a)

Differentiation shows that a small unit increase in R increases the expected value of s by less than 
expected generation per unit of renewable capacity:

1 1

( ) / [ ( ) ( )] ( ) ( ) .D DE s R F R F R S h d h d
θ θ

θ θ θ θ θ θ θ θ∂ ∂ = − − <∫ ∫  (4.1b)

Figure 4: Equilibrium in Regime 3, Case (c)
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In this regime, an increase in R only increases charging when LD is between θR and (θR-S). Simi-
larly, increasing storage capacity by a small unit increases the expected amount stored by less than 
one unit:

1

( ) / ( ) ( ) 1.DE s S F R S h d
θ

θ θ θ∂ ∂ = − <∫  (4.1c)

An increase in S has no impact on charging for final demand above (θR–S), but there is an increase 
in the amount stored at lower levels of final demand, when storage is charged fully.

It follows from the discussion of regime 1 above that expected daytime operating c ost is 
given by
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Expected daytime operating cost is independent of S under this regime because storage demand 
never causes gas to turn on or induces a shortage. Increases in either R or G reduce expected daytime 
operating cost:
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∫  (4.2b)
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To get expected nighttime operating cost, it is simplest first to evaluate expected cost 
conditional on s and then take the expectation over s. If ηs MWh are sold from storage at night, 
expected nighttime operating cost is given by
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 (4.3a)

When nighttime final demand, LN, is between ηs and ηs+G, it can be met by gas generation and sales 
from storage. Higher levels of demand lead to shortages, gas generation runs at capacity, and the 
system marginal cost rises to the value of lost load, v.16

Differentiating (4.3a) yields the impacts of increasing G and s on conditional expected cost:

[ ]( ) 1 ( ) 0,NG v c F G sω η∂ ∂ = − − − + <  (4.3b)
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 (4.3c)

The right-hand side of (4.3b) is minus the expected nighttime net earnings of a unit of gas capac-
ity, conditional on G and s. The right-hand-side of (4.3c) is minus η times the expected nighttime 

16. Recall that by assumption (3.1), LN is never less than ηs.
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marginal cost, again conditional on G and s. Since nighttime demand is perfectly inelastic, it is also 
minus η times the (conditional) expected nighttime market price of energy, which is the net revenue 
from a unit of charge in storage at the start of a nighttime period.

Taking the expectation of ω over s, using the description of competitive operating behavior 
under Regime 1 in Section 3, yields unconditional expected nighttime operating cost:
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∫ ∫  (4.4a)

Differentiating this expression shows that increases in renewables capacity reduce ex-
pected nighttime operating cost by increasing expected storage:
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An increase in renewable capacity increases the expected end-of-daytime value of s, per equation 
(4.1b), thus lowering expected nighttime cost by increasing the expected nighttime supply from 
storage. The second equality in (4.4b) follows from (4.3c).

Increases in gas capacity reduce expected nighttime operating costs by reducing the prob-
ability of a nighttime shortage:
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(4.4c)

The expression in in curly brackets in the second line is the expected probability, conditional on θ, 
of a nighttime shortage, the probability that LN exceeds the supply from storage plus the supply from 
gas generation operating at capacity. To see this, note that such a shortage can arise in three possible 
ways. The first term in that expression reflects the fact that with probability FD(θR–S), storage is 
fully charged, and the conditional probability of a nighttime shortage is then [1–FN(G+ηS)]. At the 
other extreme, the third term reflects the fact that with probability [1–FD(θR)], daytime load exceeds 
θR so that gas must be used, the marginal operating cost is c, no charging occurs, and s=0. Condi-
tional on no supply from storage, the probability of a nighttime shortage is just [1–FN(G)]. Interme-
diate values of LD, which imply 0 ≤ s=θR–LD ≤ S from the discussion of competitive operation under 
regime 1, have density fD(LD) and conditional night-time shortage probability {1–FN[G+η(θR–L)]}.

Finally, increases in storage capacity reduce expected nighttime operating cost by increas-
ing expected nighttime sales from storage:
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From (4.1c), the expected increase in s from a small unit increase in S is the expected value of 
FD(θR–S), and that increase occurs when the daytime load is such that generation is being fully 
charged. Since storage is only charged when the marginal cost of electricity is zero, there is no as-
sociated daytime cost increase. The reduction in expected nighttime operating cost is just expected 
nighttime marginal cost when storage is fully charged, ( )NP S , times the increase in expected energy 
sales from storage, the expectation of ηFD(θR–S).

Using (4.2a) and (4.4a), expected system total capacity plus operating cost as a function of 
R, G, and S can be written as

( ) ( ), ( , , ).R G SE TC C R C G C S R G R G S= + + + Λ +Ω  (4.5)

Drawing on the analyses of Λ and Ω above, the first-order conditions for minimizing this quantity 
are given by:
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Condition (4.6a) reflects the fact that renewable suppliers earn revenue whenever the day-
time market price of energy is positive. With probability [FD(θR+G)-F(θR)], that price is c, and 
with probability [1-F(θR+G)], that price is v. The discussion of regime 1 in Section 3 establishes 
that when LD is between θR–S and θR, the market price of energy is ( , ).NP G R Lη θ −  The integrand 
on the right of (4.5b) is thus the expectation of output per unit of renewable capacity, θ, times the 
expectation (over daytime and nighttime final demands) of revenue per unit of output, conditional 
on θ. That product is expected revenue per unit of capacity conditional on θ, and the integral is the 
unconditional expected revenue per unit of renewable capacity. Condition (4.6a) thus says that the 
cost of a unit of renewable capacity must equal the corresponding expected per-unit operating reve-
nue. This necessary condition for R to minimize total system cost is a zero-expected-profit condition 
that must hold in long-run competitive equilibrium.

Gas generators earn revenue in excess of marginal operating cost in both daytime and 
nighttime only when conditions of shortage prevail. The integrand in (4.6b) is just per-unit net rev-
enues conditional on shortage, times the sum of the daytime and nighttime probabilities of shortage 
conditions, conditional on θ. The integral is thus the unconditional sum of the two shortage prob-
abilities. Condition (4.6b) requires that capital cost equal expected net operating revenue, another 
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zero-expected-profit condition for minimization of total system cost that must hold in long-run 
competitive equilibrium.

Condition (4.6c) is also a zero-expected-profit condition. When LD is below (θR-S) storage 
is fully charged. The integral in (4.5d) is the unconditional probability of that event, and it is mul-
tiplied by expected nighttime revenue per unit of capacity when storage is fully charged. Storage 
is also partially charged when LD is between (θR-S) and θR. But the price paid for stored energy in 
that case is exactly equal to expected revenue of subsequent nighttime sales, so there is no effect on 
expected profit

Conditions (4.6) thus establish that all minima of expected total cost can be supported as 
equilibria of markets with continua of infinitesimal, price-taking suppliers of generation and stor-
age. To prove that all competitive equilibria are minima of expected total cost, it would be necessary 
to show that the Hessian corresponding to conditions (4.6). I have been unable to do this, but I have 
been able to sign the diagonal elements of that matrix:
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The first term on the right in (4.7a) is positive by the definition of Regime 1, and the integral in the 
last term is negative by (3.2b). It follows from equations (4.7) that conditional on the values of any 
two of the three stock variables, R, G, and S, the long-run competitive equilibrium value of the third 
minimizes expected total cost.

5. CONCLUDING REMARKS

The results in Sections A and B of the online Appendix that assume Regimes 2 and 3, 
respectively, exactly parallel those above. In all three possible regimes in this model, the first-or-
der necessary conditions for minimization of expected total cost imply that competitive suppliers 
of renewable generation, gas generation, and storage earn zero expected profit. Thus all minima 
of expected system cost can be supported as zero-expected-profit long-run competitive equilibria. 
Moreover, all own second partial derivatives are positive, so that conditional on the values of any 
two of the three stock variables, R, G, and S, the long-run competitive equilibrium value of the third 
minimizes expected total cost.
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Under all three regimes, however, it has not been possible to show that the relevant Hessian 
is always positive definite. Thus I cannot rule out the possibility that for some parameter values and 
probability distributions there exist zero-expected-profit competitive equilibria that do not corre-
spond to minima of expected total cost. Given that this model is otherwise well-behaved and that the 
diagonal elements of the relevant Hessian are always positive, if such inefficient equilibria actually 
exist, it seems likely that they do so only in odd and unusual cases.

If energy prices are not capped below the value of lost load, Boiteux (1960, 1964)-Turvey 
(1968)-style models indicate that revenue from competition in energy markets leads to the econom-
ically efficient supply of generation capacity. The results here provide the same sort of support for 
reliance on the competitive supply of storage, at least in the context of the duck curve problem. 
These results thus provide support for the preference in the EU and at the federal level in the U.S. 
for storage to be determined by market competition.

In most energy markets in the U.S. and the EU, however, prices are capped below rea-
sonable estimates of the value of lost load,17 and those caps are occasionally binding. Boiteux-
Turvey-style models then imply that revenues from sales in energy markets will provide inadequate 
incentives for investment in generation.18 And in most electricity markets in the U.S. and the EU, 
“capacity mechanisms” have been developed to supplement energy market revenues. These mecha-
nisms typically involve a determination by a regulator or system operator of the level of generation 
capacity necessary for an acceptable level of reliability along with a capacity market or other mech-
anism for compensating suppliers of that capacity.

Just as caps on wholesale energy prices reduce incentives for investment in generation, 
it follows from the Boiteux-Turvey-style analysis here that caps on wholesale energy prices will 
lead to inadequate incentives for investment in storage for energy arbitrage. It seems unlikely that 
this theoretical finding is what has motivated the U.S. states that have adopted quantitative storage 
targets, but it does seem likely that some analog to “capacity mechanisms” may come to be felt to 
be necessary to supplement energy arbitrage revenues to increase the supply of storage. “Capacity 
mechanisms” use reliability to determine the appropriate level of generation capacity; it is not clear 
how the appropriate level of storage capacity of various sorts would sensibly be determined.
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