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A Spatial Stochastic Frontier Model with Omitted Variables: Electricity 
Distribution in Norway
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ABSTRACT

An important methodological issue in efficiency analysis for incentive regulation 
of utilities is how to account for the effect of unobserved cost drivers such as en-
vironmental factors. We combine a spatial econometric approach with stochastic 
frontier analysis to control for unobserved environmental conditions when mea-
suring efficiency of electricity distribution utilities. Our empirical strategy relies 
on the geographic location of firms as a source of information that has previously 
not been explored in the literature. The underlying idea is to utilise data from 
neighbouring firms that can be spatially correlated as proxies for unobserved cost 
drivers. We illustrate this approach using a dataset of Norwegian distribution util-
ities for the 2004–2011 period. We show that the lack of information on weather 
and geographic conditions can be compensated with data from surrounding firms. 
The methodology can be used in efficiency analysis and regulation of other util-
ities sectors where unobservable cost drivers are important, e.g. gas, water, agri-
culture, fishing.
Keywords: spatial econometrics, stochastic frontier models, environmental 
conditions, electricity distribution networks.
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1. INTRODUCTION

Since the 1990s many network utilities are incentive regulated with the aim of improv-
ing their operating and investment efficiency as well as ensuring that consumers benefit from the 
gains. In many instances, the regulators aim to measure the firms’ relative efficiency against those 
with best practice performance using parametric and non-parametric techniques (see Haney and 
Pollitt, 2013). As regulators reward or penalise firms using relative efficiency measures, obtaining 
reliable (and fair) measures of firms’ efficiency requires controlling for the different environmental 
conditions under which each utility operates. This is particularly important in the case of incentive 
regulation and benchmarking of electricity, gas, and water networks where the results of efficiency 
analysis have important financial implications for the firms.

However, there are many characteristics of the utilities sector (e.g., geography, climate 
or network characteristics) that affect production costs but which are unobserved. Some statistical 
methods have recently been developed to address this issue. For instance, the True Fixed/Random 
Effects models introduced by Greene (2005) capture the unobserved heterogeneity through a set of 
firm-specific intercepts. This approach only uses the temporal (i.e. within) variation contained in the 
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data to estimate the coefficients of other cost drivers. As we will show later, this is quite problematic 
in our application because many important determinants of utility costs such as the energy delivered 
or number of customers, are persistent or slow changing variables. On the other hand, possible dif-
ferences among utilities associated with their use of different technologies are also often addressed 
using simple sample selection procedures, latent class models, random coefficients models, or semi-
parametric models.

In this paper we advocate using a different empirical strategy to account for the unobserved 
differences in environmental conditions among electricity distribution networks based on their geo-
graphic location. The latter presents an invaluable source of information that has been ignored in 
the literature which up to now was dedicated only to estimating network technology or the measure-
ment of their relative inefficiency. Indeed, as many unobservable variables are likely to be spatially 
correlated, an alternative empirical strategy emerges. Our spatial model is prompted from the fact 
that any (relevant) unobservable cost driver should be correlated with firms’ costs, a variable that 
is observable by the researcher/regulator. The underlying idea of our empirical proposal is to use 
(surrounding) firms’ costs as proxies of the unobserved cost drivers that are likely to be spatially 
correlated, such as weather and geographic conditions, population structure, electricity demand pat-
terns, input prices, etc.

Regarding other popular approaches in the Stochastic Frontier Analysis (SFA) literature 
to deal with omitted variables such as panel data, random coefficient and latent class models, it is 
beyond the scope of the paper to compare our approach with all other possible methods. As all ap-
proaches have advantages and disadvantages and rely on different assumptions, the results obviously 
differ in the same fashion as a latent class model provides different results than a random coefficients 
model or a panel data estimator. Note that a common feature of the above approaches is that they ig-
nore the spatial structure of the data. This distinctive feature makes the paper relevant for researchers 
working in energy economics and other network industries. Moreover, our spatial-based approach 
can be used in panel data settings. Indeed, as they utilise different (spatial vs. temporal) dimensions 
of our data, they can be viewed as complementary approaches to deal with unobserved variables. In 
this sense, we also examine whether there are spatial spillovers once we control for firm-specific but 
time-invariant effects using the true fixed and random effects stochastic frontier models introduced 
by Greene (2005) and Mundlak (1978)-type specifications of our pooled SFA model.

The main contribution of this paper is to link efficiency analysis methods addressing un-
observed heterogeneity with spatial econometrics methods commonly employed to examine spatial 
interactions across regions.1 To the best of our knowledge, our paper is among the first to apply spa-
tial econometrics in efficiency analysis using firm level data. There are no major systemic economic 
or technical reasons that the conditional cost of a firm (i.e. given its own output and price variables), 
is affected by those of adjacent firms to any significant degree.2 In this context, the estimated spill-
over effects in our model are expected to be spurious, i.e. only caused by omitted variables. This in 

1.  Since the seminal contribution by Anselin (1988) introducing the spatial effects to econometric models, researchers 
have developed several spatial econometric models and estimation methods (see, e.g, Kelejian and Prucha, 1998, 2010 and 
Baltagi and Liu, 2011). For comprehensive reviews of this literature, see Arbia (2014) and Elhorst (2014). Regarding our 
spatial approach, it should be pointed out that this literature uses spatial information not only to examine economic-based 
(causal) spatial spillovers, but also to deal with omitted variables that are spatially correlated (see, e.g., LeSage and Pace, 
2009). As Elhorst (2010) point out a model with spatial autocorrelation in not observable variables (the so-called SEM) 
can be expressed as a Spatial Durbin Model (SDM) with constraints, which is the idea behind our proposal. In our case, we 
do not expect causal spatial spillovers and the unobservable spatial spillovers can be estimated using a constrained Spatial 
Durbin Model.

2.  We are thankful to the NVE staff in charge of network regulation who could confirm this point.
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turn implies that our spatial specification introduces constraints on the parameters, instead of the 
traditional spatial model. Moreover, the spatial econometric models are used (interpreted) here as 
a means to control for unobserved heterogeneity in a standard SFA model measuring firms’ ineffi-
ciency.3

Empirical analysis of efficiency of distribution utilities have, since the deregulation and 
unbundling of the electricity sector, led to a number of studies. Such studies initially focused on 
international comparisons of efficiency and productivity (e.g., Hattori et al., 2005) then later ex-
tended their focus to include quality of service in the analysis (e.g., Yu et al., 2009). More recently 
the scholarly focus has been on the efficiency and productivity development of the networks under 
regulation (Dimitropoulos and Yatchew, 2017) and how to take the heterogeneity among the firms 
into consideration (Kumbhakar and Lien, 2017; Orea and Jamasb, 2017).4 The present paper falls 
into the latter category of studies.

The geographic/weather variables might either have a direct effect on costs of firms if a 
deterioration in the environment technically requires the use of more (expensive) inputs to provide 
the same level or quality of service, or an indirect effect on firms’ cost through inefficiency if, for 
instance, it is more difficult to operate in regions with adverse weather conditions. Regardless of 
whether they have a direct or indirect effect on costs, firms operating in regions with unfavourable 
weather conditions should not be penalised for their relative poor performance because of environ-
mental conditions that are beyond their control.

Therefore, some regulators control for these conditions in benchmarking or revenue cap 
exercises and often use simpler empirical strategies than in the present paper as they also aim to gain 
acceptance from stakeholders. For instance, cost data of firms is often purged by regulators (e.g., 
by Ofgem in the UK) in order to control for the effect of adverse environmental conditions prior to 
using them in benchmarking exercises. Also, the Norwegian regulator uses advanced econometric 
analysis of the data in order to enhance their understanding of the features of the firms and the sector 
prior to benchmarking analysis.

Other regulators directly examine in Data Envelopment Analysis (DEA) or SFA frontier 
models the role and significance of variables related to cables, connections and meters, substa-
tions and transformers, towers, decentralized generation, injection points, population changes, soil 
types, altitude differences, urbanization, areas etc. The Norwegian regulator has used environmental 
variables such as forest, snow and wind as additional outputs in first-stage DEA analysis followed 
by second-stage analyses to correct the calculated DEA efficiency scores for three environmental 
factors: interfaces, islands and distributed generation (see Frontier Economics, 2012). The German 
energy regulator undertakes an extensive second-stage analyses to determine whether some of more 
than 200 non-included variables should be included in the analysis. The second-stage analyses are 
typically conducted by regressing the first-stage efficiency scores on environmental factors in stage 
two, or simply using graphical inspection or non-parametric tests for ordinal differences (see Agrell 
and Bogetoft, 2013). It is noteworthy that these methods require collecting costly environmental 
data, while our spatial-based approach uses the already available cost data.

The next section presents the spatial econometric model that allows us to use data from 
surrounding firms as proxies for the omitted, but spatially correlated, cost drivers. Section 3 sum-
marizes the empirical strategy used in this paper to estimate a SFA model that includes a generated 
variable as an additional regressor. Section 4 dwells on the data used in the empirical analysis and 
its sources. In Section 5 we estimate a spatial econometric model to compute a proxy variable that 

3.  See Glass et al (2016) for a recent application with spatial effects in SFA settings.
4.  See also Kopsakangas-Savolainen and Svento (2011), Growitsch et al (2012), and Kumbhakar et al (2015).
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will stand in for spatially correlated omitted variables. We then estimate a standard SFA model to 
estimate the inefficiency of the firms and to conduct a robustness analysis using the available envi-
ronmental data and panel data estimators. Finally, Section 6 presents the conclusions.

2. A Cost Model with (Unobserved) Spatially Correlated Variables

This section develops a micro-level spatial econometric model that allows us to control for 
unobserved environmental conditions that are likely to be spatially correlated when we use a cost 
function to estimate the firms’ technology. Let us first assume that the firms’ cost can be modelled 
entirely by using the following cost equation:

b= + + +it it it it itlnC X Z v u  (1)

where i stands for firms, t stands for periods, Cit is a measure of firms’ cost, and Xit is a vector of k ob-
servable cost drivers such as the number of customers, energy delivered, network length, and labour 
and capital prices and Zit represents the unobserved cost drivers. This equation includes two error 
terms, iv  and iu . While the former term is a symmetric error term measuring pure random shocks, 
the latter term is a non-negative error term measuring firms’ inefficiency.

As is often the case with observed data,5 some unobserved cost drivers are also likely to be 
spatially correlated. In line with the literature on spatial econometrics, the spatial correlation can be 
modelled as follows:

l=it i tZ W Z  (2)

Here Zt is a vector of Nx1 unobserved cost drivers, Wi is a known 1xN spatial weight vec-
tor with elements that are equal to zero if a particular firm j is not a neighbour of firm i and equal 
to one if the two firms are neighbours—i.e. the service areas of the electricity distribution utilities 
are adjacent. The term l is a coefficient that measures the degree of spatial correlation between the 
unobserved cost drivers.

Equation (1) cannot be directly estimated as Zit is an omitted variable that, if ignored, will 
bias our efficiency scores because it will be captured by the noise or inefficiency terms. We thus 
propose using an indirect approach to estimate (1). The underlying idea behind our proposal is that 
we could use the (purged) costs of surrounding firms as proxies for Zit if the unobserved cost drivers 
are spatially correlated. Hence, our empirical strategy takes advantage of the spatial proximity of 
the networks.

First, we proceed to replace Zit in equation (1) with equation (2). Thus, equation (1) can be 
alternatively rewritten as follows:

b l= + + +it it i t it itlnC X W Z v u  (3)

This equation again cannot be estimated as the vector Zt is not observed. However, note 
that, by rearranging equation (1), we can obtain:

5.  For illustration purposes, we show several auxiliary regressions in Appendix A where we use equation (2) to examine 
the degree of spatial correlation for some of our observed cost drivers. As expected, we find that all variables are spatially 
correlated to some extent. Therefore, it is reasonable to expect some degree of spatial correlation also in unobserved deter-
minants of firms’ costs.
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b= − − −it it it it itZ lnC X v u   (4)

This equation simply indicates that, if b  and both errors terms were observable, Zit should 
be correlated with a purged cost measure. In this sense, the purged costs can be interpreted as an 
“observable” counterpart of Zit. We then replace Zt in equation (3) with its “observable” counterpart, 
obtaining the following model:

b l lb e= + − +it it i t i t itlnC X W lnC W X  (5)

where

e = + +it it it ith v u  (6)

and

( )l= − +it i t th W v u  (7)

( )1 2, , ,= …t t t NtC C C C  is an Nx1 vector of the observed costs of the firms, ( )1 2, , ,= …t t t NtX X X X  
is an Nx1 vector of firms’ explanatory variables, and vt and ut are again Nx1 vectors of the firms’ 
random terms. 

Several comments are in order with respect to this specification of the firms’ cost.  First, if 
we compare the original model in (1) and the new specification in (5)-(7), we notice that:

ˆ= +it it itZ Z h  (8)

where 

ˆ l lb= −it i t i tZ W lnC W X  (9)

Equation (8) simply shows that the unobserved cost driver Zit can be decomposed into a 
predictable component ˆ

itZ  (i.e. the portion of Zit that can be predicted with the data of surrounding 
firms), and an unpredictable component hit. The latter term can in turn be interpreted as a measure-
ment error term. As the inefficiency term is non-negative, hit is negative on average, and hence our 
predicted ˆ

itZ  tends to overestimate the true value of the omitted variable Zit.
Second, in contrast to equation (1), equation (5) is a cost model that now includes a set of 

spatially lagged variables, i.e. i tW lnC  and i tW X . Therefore, equation (5) resembles a conventional 
spatial econometric model. However, in our model, only one additional coefficient is estimated, 
and the coefficient of the spatially lagged dependent variable should not be interpreted as the effect 
of neighbours’ costs on the cost of a particular firm. Rather, l is measuring the spatial correlation 
between the unobserved or omitted variables in our sample. Our empirical strategy relies on the 
statistical significance of this coefficient as we are unable to use the data of surrounding firms to 
obtain a proxy for Zit if l =0. Therefore, it is important for our empirical strategy to test whether this 
parameter is statistically significant.

On the other hand, it is worth mentioning that our spatial specification of firms’ costs in 
equation (5) is similar to the Durbin Stochastic Frontier (SDF) model introduced recently by Glass 
et al. (2016) in which they propose estimating the following model:

b l q e= + + + it it i t i t itlnC X W lnC W X  (10)
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where e = +it it itv u . It is easily observable that our spatial model in (5)-(7) and the SDF model differ 
in two important aspects. First, the set of parameters q in the SDF model is not restricted to be equal 
to -lb. In this sense, our spatial model in (5) is nested in the SDF model. However, no spatially cor-
related omitted (random) variables are explicitly modelled in the SDF model. Although Glass et al. 
(2016) state that their approach can be “easily adapted to develop a spatial error stochastic frontier 
model”, they do not include a spatial structure in the error term. In terms of our spatial model, this 
is equivalent to using a zero hit term. The mentioned differences simply indicate that our spatial 
model and the SDF model are non-nested. This is because the spatial spillovers in both models are 
of different nature. While the spatial spillovers in Glass et al. (2016) have an economic or causal 
interpretation, the spatial spillovers in our spatial model are simply associated with the omitted 
variables. Hence the spatial effects estimated in our model lack an economic interpretation as they 
are completely “spurious”.

We next discuss how to estimate our spatial SFA model taking into account that eit includes 
two spatially correlated error terms (see equations 6 and 7). If the spatial error correlation involves 
a one-sided error term, this does not prove to be an easy task. In order to gain an idea of this, we 
rewrite again our spatial model in equations (5)-(7) as follows:

[ ]b l lb= + − + ∆ + ∆it it i t i t it itlnC X W lnC W X v u  (11)

where

l∆ = −it it i tv v W v

l∆ = −it it i tu u W u

It should be pointed out that while ∆ itv  follows a complex multivariate normal distribu-
tion, the distribution of ∆ itu  (i.e. the difference of, say, two independent one-sided error terms) is 
not known, and this prevents using a ML estimator (see Wang, 2003; and Wang and Ho, 2010). As 
a fully ML specification of the model is not feasible in our case, in the next section we propose a 
simple procedure that includes ˆ

itZ  as an additional regressor, and controls for hit by using a linear 
function of its determinants.6

3. Stochastic Frontier Model with Generated Regressor

Our estimation strategy uses a two-step procedure, advocated for various models in Kum-
bhakar and Lovell (2000). In the first step, equation (5) are estimated ignoring the (spatial and 
frontier) structure of the error term, eit. The degree of spatial correlation of omitted variables (i.e. 
parameter l) and other coefficients of the cost frontier are estimated using the Generalized Method 
of Moments (GMM) because the spatially lagged dependent variable is endogenous. It is worth 
noting that, as in previous literature on both spatial and SFA models using two-stage procedures, the 
first-step GMM residuals are not used here to estimate the complete structure of the overall term eit 
because its distribution is not known. Instead, the first-step estimates aim to obtain a prediction of 
Zit that is used in a second regression as an additional explanatory variable.

In the second step, the following specification of firms’ cost in equation (1) is estimated:

ˆb g= + + +it it it it it itlnC X Z v u  (12)

6.  Areal et al (2012) proposed a comprehensive Bayesian procedure involving the use of a Gibbs sampler and two Me-
tropolis-Hastings steps to estimate the spatial dependence of firms’ efficiency.
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where 
ˆ

ˆ ˆg +
= =it it it

it
it it

Z Z h
Z Z

, (13)

In order to obtain (12), we have replaced the original omitted variable in (1) with its pre-
dicted counterpart using equation (9). The ratio git can be interpreted here as a firm-specific and 
time-varying coefficient, that tends to be less than unity because hit is on average less than zero. In 
our empirical application, we will first estimate a common g value for all firms, so that the final cost 
model estimated in our paper is:

ˆb g= + + +it it it it itlnC X Z v u  (14)

where the common g coefficient can now be interpreted as the average value of git. The fact that hit 
does not appear in (14) does not imply that we are (completely) ignoring the spatial part of the com-
posed error term eit in (10) because hit is roughly captured (at least its average value) by an estimate 
of g that will depart from the theoretical value of unity.

It should be pointed out, however, that git is a function of hit, which on average depends on 
the number of adjacent firms (i.e. Wi) and the inefficiency level of adjacent firms (i.e. the magnitude 
of ut). Therefore, more accurate estimates can be obtained if we model git as a linear function of the 
number of adjacent firms (Ni) and, if the SFA model is heteroskedastic, the spatial lags of all deter-
minants of firms’ inefficiency (Wiqit), that is:

0 1 2g g g g= + +it i i itN W q  (15)

Therefore, our preferred specification of the second-step model is:

( )0 1 2
ˆb g g g= + + + + +it it i i it it it itlnC X N W q Z v u  (16)

Finally, note that, conditional on ˆ
itZ , our new specification of firms’ cost has the structure 

of a conventional SFA model, so it can be estimated using MLE techniques once the distributional 
assumptions concerning the noise and inefficiency terms are made. As is common in the SFA lit-
erature, we will assume that ( )~ 0,sit vv N  and the inefficiency term are independently distributed 
across firms and over time, and follows a half-normal distribution, i.e. ( )~ 0,s+

it uu N .7 As antic-
ipated above, this model can accommodate heteroskedastic inefficiency terms simply by making 
the variance of s u functions of some exogenous variables (qit). Regardless of whether the model is 
homoscedastic or not, efficiency scores are estimated for each firm using the conditional distribution 
of uit given vit+ uit introduced by Jondrow et al. (1982).

4. DATA

We apply our empirical strategy to a balanced set of panel data for the Norwegian distribu-
tion utilities over the years 2004 to 2011. The data used in this study was obtained from the sector 
regulator, the Norwegian Water Resources and Power Directorate (NVE). We specify a simple cost 
model that uses, in line with the Norwegian benchmarking approach, social costs (SCOST) as the 
dependent variable. In addition to operating expenses (OPEX), capital depreciation and its oppor-
tunity cost, the social costs variable also includes the cost of network energy losses, and the cost of 

7.  The stochastic frontier model can accommodate heteroskedastic inefficiency terms simply by making the variance of 
s u functions of some exogenous variables.
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energy not supplied (CENS) to different user groups due to service interruptions. The cost of net-
work energy losses is obtained by multiplying the units of network energy losses with the average 
system price in NordPool wholesale market in a given year. CENS is calculated by multiplying the 
energy not supplied (KWh) during a specific interruption with a unit cost (NOK/KWh) that depends 
on customer type, duration, and whether the interruption was planned or not.

We follow the previous literature to select the main cost drivers. In particular, all of our 
estimated cost functions include three outputs (CUS=number of customers; NL=network length; 
and DE=delivered energy), and three input prices (PK=capital price, regulated return of capital; 
PE =energy price, reference system price in NordPool Spot; PL=labour price, a wage dominated 
index).8 We also use the percentage share of overhead lines (OH) of the total network length as an 
additional cost driver. This variable is employed to represent the main technical feature in this indus-
try as firms’ decisions on, for example, investment and maintenance of overhead and underground 
lines, are different.

Regarding firms’ inefficiency, we follow Orea and Jamasb (2017) and use the percentage of 
overhead lines (OH), the network length variable (NL) and the number of transformer stations (ST) 
as inefficiency determinants. We include ST and OH as efficiency determinant to examine whether 
it is costlier to manage firms with more stations and with higher share of overhead lines. These can 
also be viewed as measures of complexity of networks something that regulatory benchmarking 
models are currently lacking. Finally, NL allows us to examine whether larger utilities tend to be 
more efficient than smaller utilities. The monetary variables finally used in our application are mea-
sured in 1000 NOK and have been deflated using the consumer price index to express them in 2004 
real terms.

For robustness analyses, we extend the above set of cost drivers to include several weather 
and geographic (W&G) variables. In particular, in the extended models we use six environmental 
variables: WIND=average reference wind speed from measuring stations; WINDEX=expected ex-
treme wind exposure; and DIS=average distance to coast; FOREST=a measure of forest density in 
service areas of the networks; AVESLOPE=average slope of the terrain; and MAXSLOPE=maxi-
mum slope of terrain.9

The above geographic and weather variables were obtained from the Norwegian regulator. 
The NVE regulator has access to more than 60 different weather and geographic condition variables 
that can potentially affect the performance of the networks. However, for practical reasons only a 
few of these variables can be included in parametric efficiency analysis models. Most of our selected 
environmental variables are considered as relevant by the Norwegian regulator. For instance, the 
regulator uses the ratio of squared wind speed over distance to coast in order to reflect the effect of 
coastal climate and corrosion caused by a combination of wind and salt water on the networks. Sim-
ilar reasons apply to our variables measuring the slope of terrain. Moreover, the regulator considers 
a range of variables in pre-benchmarking analysis to account for the effect of different degrees of 
forestation in the service area, as fast-growing forest may represent a cost disadvantage due to the 
added cost of forest clearing. We use here an aggregate measure of forestation (FOREST) that has 
been computed using Principal Component Analysis technique due to we encountered convergence 

8.  Energy Price is used to impose linear homogeneity. Therefore, it will not explicitly appear in our set of parameter 
estimates.

9.  The variable FOREST is a composite variable computed by principal component analysis of a large set of variables 
measuring different forest types and features. The procedure is carried out after the variables are cantered with respect to 
sample mean. Thus it could take both negative and positive values.
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problems in Orea and Jamasb (2017) when we included the whole set of variables that are available 
in our data set to account for forest conditions.

In our study we follow the common approach in the literature for capturing and measuring 
the spatial interdependence using a physical contiguity matrix, W, whose elements are one for two 
bordering areas, and zero otherwise. As a result, the diagonal elements of W are null, while its off 
diagonal entries take a value of 1 for the areas that are adjacent and 0 otherwise. Therefore, WX 
should be interpreted as the sum of the X variables for the adjacent areas. The same applies for the 
WY product. In order to include the spatial interactions, we consider the map showing the distribu-
tion of service areas provided by NVE in October, 2015 (see Figure 1). This map is georeferenced 
using the ArcGIS data system. We have used this georeferenced information to identify the adjacent 
distribution areas.

Finally, it is noteworthy that our observations are the service areas of distribution utilities. 
Both the data on firms’ costs and the map provided by the Norwegian regulator include the name of 
the distribution utilities. This information allowed us to match the distribution areas with the data 
of the firms operating in those service areas. The data for each distribution area normally coincides 
with the data of a single firm. However, the data for a small number of distribution areas involves 
more than one firm because they were involved in mergers from 2004 onwards and their individual 
distribution areas are not available as the map provided by the regulator only shows the distribution 
of service areas many years later. We only have the overall distribution area of the merged firms 
in 2015. Therefore, we aggregated the data for merged firms from 2004 onwards until the merger 
happened.10 

10.  In previous specifications of our models, we have included a merger dummy variable to control for possible aggre-
gation biases. As expected, the coefficient of this variable was not statistically significant likely due to the small number of 
mergers for the period analysed in this paper.

Figure 1: Norwegian electricity distribution service areas

Source: Norwegian Water Resources and Power Directorate (NVE)
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Table 1 provides a descriptive summary of the variables used in this study. As the number 
of distribution areas in 2015 with available data is 129, the total number of observations used in our 
analysis is 1032.

5. RESULTS

5.1. First-stage GMM Regression and Predicted Values of Omitted Cost Drivers

We first estimate equation (5) using GMM in order to control for the endogeneity of the 
spatial lagged dependent variable. The following strategy is then adopted for instrumental variables. 
Proper instruments should be strong (i.e. highly correlated with the endogenous variable) and exog-
enously determined. The spatial lagged dependent variable is a measure of the costs of neighbouring 
firms, and the main cost drivers in the sector are the output variables. Demand for electricity net-
work services is exogenous and beyond the control of the firm. Therefore, the output variables of 
the neighbours are both strong and exogenous instruments for the spatial lagged dependent variable. 
We use the spatial lagged number of customers and the spatial lag of its square value (i.e. i tW lnCUS  
and 2

i tW lnCUS ) as instruments for i tW lnC . We performed the conventional Hansen’s (1982) test, and 
the F-test for weak instruments (Staiger and Stock, 1997) to test for overidentifying restrictions 
and strength of the instruments. The results of both tests indicate that the chosen instruments are 
generally valid.

Table 2 shows the estimated coefficient of this variable. We do not provide the other co-
efficients of the model in this table as they are similar to those obtained in the next section, mainly 
focused on technological characteristics of the cost frontier of the firms.

We observe that the coefficient of spatial correlation l is positive and significant. Hence, 
we conclude that the unobserved cost drivers are, at least to some extent, spatially correlated. This 
result also indicates that weather and geographic conditions, and other spatially unobserved cost 
drivers (such as the population structure, electricity demand patterns, input prices) matter and that 
they should be included as cost determinants.11

11.  Growitsch et al. (2012) have found a similar conclusion using a different approach to control for unobserved and 
observed environmental conditions.

Table 1: Descriptive statistics of the data 
		  Mean	 St.Dev.	 Min	 Max	

SCOST	 1000 NOK	 92899.7	 192397.6	 793.4	 1797173.2	
CUS	 Number	 21118.5	 56320.3	 14	 552342	
DE	 1000 MWh	 570990.7	 1570418.9	 3979	 17000000	
NL	 Km	 752.5	 1290.7	 9	 8648	
OH	 %	 0.66	 0.20	 0.00	 0.97	
PK	 %	 0.06	 0.01	 0.05	 0.1	
PL	 Index	 163.86	 16.89	 139	 189.5	
PE	 NOK/MWh	 331.01	 73.93	 234.6	 436.3	
ST	 Number	 948.1	 1828.7	 8	 13525	

WIND	 m/s	 25.5	 2.48	 22	 31	
WINDEX	 m/s	 5.28	 1.02	 2.71	 8.13	
DIS	 km	 53455.3	 54567	 191	 19637	
FOREST	 Index	 0	 2.45	 –3.21	 22.51	
AveSLOPE	 %	 10.13	 3.74	 2.86	 22.22	
MaxSLOPE	 %	 51.09	 11.91	 19	 75	
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The fact that the coefficient of spatial correlation l is statistically different from zero im-
plies that we can use equation (9) and the data of surrounding firms to compute a proxy variable for 
the omitted cost drivers. The predicted values of the omitted cost drivers are summarized in Figure 
2, where we plot kernel density functions of the percentage of cost attributable to (unfavourable) 
environmental conditions, measured in relation to the “average” firm. Figure 2 thus suggests the 
existence of remarkable cost differences between utilities attributable to different environmental 
conditions. This is most probably what regulators wish to control for.

The firm with the most unfavourable omitted conditions has 33.5% higher costs than the 
representative firm. On the other hand, the firm with the most favourable omitted costs has 22.5% 
less costs than the representative firm. Orea et al. (2015) have found similar results using supervised 
environmental composite variables. For instance, their preferred model predicts up to 35% higher 

Table 2: First-stage GMM parameter estimates
	 Coefficient	 Robust-t	

Intercept	 10.5699	 378.74	
Spatial lag of  the dependent variable (W·lnC)	 0.1660	 5.69	

Cost drivers:			 
Output variables		  Yes	
Input prices 		  Yes	
Overhead variable		  Yes	

Hansen Chi-squared test (df)		  0.1332 (1)	
Weak instruments F-test (df in parenthesis)		  47.21 (24,1007)	

R-squared	 0.9870		

Notes: 
(a) �For more details about the cost drivers and the functional form of the cost function, see 

Table 4.
(b) Instruments= all exogenous explanatory variables plus the spatial lag of lnCUS and lnCUS2.

Figure 2: Histograms and Kernel density plots of estimated environmental cost differences
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costs for utilities operating in areas with unfavourable environmental conditions. For utilities oper-
ating in good environmental conditions, their preferred model predicts up to 44% lower costs.

Table 3 shows the between and within standard deviations of the predicted values of the 
omitted variables and the main observed drivers of firms’ costs. It is worth mentioning that the 
within-variation of ˆ

itZ  is only slightly lower than the between-variation. Thus, our approach based 
on a spatial econometric model to capture unobserved heterogeneity uses both the between and 
within-variation contained in the data of neighbouring firms.

In contrast, a FE-type estimator only uses the within-variation contained in the data to 
estimate the coefficients of the other cost drivers. If we use one of these estimators we could obtain 
negative and statistically non-significant coefficients for delivered energy, number of customers, 
network length and other crucial determinants of utility costs.12 The low precision of a FE-type 
estimator in the present application is caused by the fact that the within-variations of most of these 
variables tend to be much lower than the between-variation (see Table 3).

5.2. Second-Stage MLE Parameter Estimates

Once we have generated a proxy variable for the omitted cost drivers, we proceed to es-
timate the stochastic cost frontier in equation (16) without the W&G variables. The results adding 
environmental variables are discussed later on.

In Table 4 we show four alternative specifications of the stochastic cost frontier. The sim-
ple-SFA model does not include the estimated values for Zit, and it is only included for comparison 
purposes. The next three models include the generated variable ˆ

itZ  as a proxy for the omitted vari-
able  itZ . In this sense, they are labelled as “spatial” models. The spatial-SFA1 model only includes 
the generated variable ˆ

itZ . The subsequent model (spatial-SFA2) adds the number of adjacent firms 
(Ni) to the specification of git. Finally, as the inefficiency term is heteroskedastic, the spatial-SFA3 
model extends the previous one by adding the spatial lags of all determinants of firms’ inefficiency.

It should be noted that, compared to the simple-SFA model, the simplest spatial model that 
only adds the estimated values for Zit improves the joint significance considerably, based on the 
likelihood function value. The estimated value of g0 is smaller than unity, an expected result as ˆ

itZ  
tends to overestimate the true values of itZ . The next two spatial SFA models allow for firm-specific 
values of git. In this case, as all variables are mean-centred, g0 can be interpreted as the sample mean 
value of git. It is worth mentioning that the new spatial models again improve the likelihood function 
values. Interestingly, the estimated value for g0 in both models is now not statistically different from 
unity. This seems to indicate that only controlling for the number of adjacent firms is enough to 

12. This identification problem can be appreciated in Table 6.

Table 3: �Between and within standard 
deviations of the main cost 
drivers

Variable 	 Between	 Within	 B/W ratio	

ˆ
iZ 	 0.065	 0.045	 1.45	

lnCUS	 1.454	 0.160	 9.09	
lnNL	 1.162	 0.035	 32.76	
lnDE	 1.404	 0.100	 13.99	
OH	 0.201	 0.026	 7.83	
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obtain the unbiased value of git, at least evaluated at the sample mean. This supports our empirical 
strategy based on a linear specification of git that takes into account that hit is the sum of several in-
efficiency terms, so its expected value depends on the number of adjacent firms (and their average 
inefficiency levels, which in turn depends on their efficiency determinants).

As comparing likelihood values is not a satisfactory approach to choose a model, Table 4 
also provides a set of model selection statistics (the well-known AIC and BIC criteria, and some 
of their variants such as the AICc and HQC criteria), which penalize the model as new explanatory 
variables are added. Thus, these criteria involve minimizing an index that balances the lack of fit 
(too few variables) and overfitting (too many variables). Models with lower values are generally 
preferred. Most model selection statistics indicate that more comprehensive models are preferred. 

Table 4: Second stage parameter estimates. Cost frontier function
	 Single SFA	 	  Spatial SFA 1	 	  Spatial SFA 2	 	  Spatial SFA 3		

 	 	 	 	 	 	 	        (Pooled)	  	
Parameters	 Estimates	 t-ratio	 Estimates	 t-ratio	 Estimates	 t-ratio	 Estimates	 t-ratio	

Frontier coefficients
Intercept	 10.511	 677.7	 10.518	 665.1	 10.518	 636.1	 10.521 	 745.21 	
lnCUS	 0.291	 10.81	 0.273	 10.72	 0.276	 10.74	 0.271 	 10.30 	
lnNL	 0.549	 25.53	 0.564	 28.06	 0.560	 27.53	 0.561 	 27.53 	
lnDE	 0.142	 6.01	 0.146	 6.45	 0.147	 6.51	 0.148 	 6.55 	
OH	 –0.312	 –4.83	 –0.298	 –4.91	 –0.294	 –4.80	 –0.285 	 –4.68 	
0.5·lnCUS2	 0.130	 6.46	 0.124	 5.85	 0.120	 5.75	 0.121 	 5.67 	
0.5·lnNL2	 –0.007	 –0.08	 –0.041	 –0.50	 –0.036	 –0.45	 –0.048 	 –0.60 	
0.5·lnDE2	 0.196	 4.99	 0.202	 5.24	 0.199	 5.26	 0.204 	 5.36 	
0.5·OH2	 0.227	 0.40	 0.349	 0.64	 0.445	 0.81	 0.466 	 0.86 	
lnCUS·lnNL	 –0.007	 –0.18	 0.003	 0.07	 0.000	 0.00	 0.005 	 0.14 	
lnCUS·lnDE	 –0.109	 –4.42	 –0.114	 –4.48	 –0.110	 –4.36	 –0.113 	 –4.51 	
LnCUS·OH	 –0.127	 –1.07	 –0.145	 –1.20	 –0.113	 –0.94	 –0.136 	 –1.10 	
lnNL·lnDE	 –0.056	 –1.22	 –0.045	 –1.00	 –0.046	 –1.03	 –0.046 	 –1.02 	
LnNL·OH	 –0.390	 –1.87	 –0.370	 –1.82	 –0.395	 –1.96	 –0.391 	 –1.94 	
LnDE·OH	 0.483	 3.34	 0.492	 3.37	 0.483	 3.34	 0.506 	 3.47 	
lnPK	 0.277	 14.19	 0.263	 13.99	 0.264	 13.93	 0.263 	 13.81 	
lnPL	 0.662	 16.89	 0.664	 17.98	 0.663	 17.88	 0.661 	 17.79 	
Spillover variables
Z	 	 	   0.894	 11.19	 1.034	 11.40	 0.999 	 11.18 	
Z·N	 	 	 	 	     –0.100	 –2.74	 –0.150 	 –3.84 	
Z·WlnNL	 	 	 	 	 	 	       –0.299 	 –2.22 	
Z·WOH	 	 	 	 	 	 	       0.109 	 0.59 	
Z·WlnST	 	 	 	 	 	 	       0.229 	 1.83 	
Log of standard deviation of disturbance
lnsv	 –2.136	 –51.02	 –2.182	 –51.69	 –2.184	 –49.28	 –2.181 	 –48.51 	
Log of standard deviation of half-normal
lnsu	 –2.376	 –11.15	 –2.447	 –10.79	 –2.436	 –10.34	 –2.463 	 –10.08 	
lnNL	 –1.623	 –3.55	 –1.621	 –3.56	 –1.485	 –3.28	 –1.497 	 –3.18 	
OH	 0.659	 1.85	 0.064	 0.17	 –0.004	 –0.01	 –0.168 	 –0.45 	
lnST	 1.012	 2.64	 1.085	 2.84	 0.971	 2.56	 1.008 	 2.54 	

Mean log-LF	 0.553	 	  0.612	 	  0.616	 	  0.621	 	
Observations	 1032	 	  1032	 	  1032	 	  1032	 	

LF	 570.51	 	  631.72	 	  635.37	 	  640.43	 	
AIC	 –1097.0		  –1217.4		  –1222.7		  –1226.8		
BIC	 –988.3		  –1103.8		  –1104.1		  –1093.5		
CAIC	 –1096.0		  –1216.3		  –1221.5		  –1225.3		
HQIC	 –1137.1		  –1259.5		  –1266.8		  –1276.9		
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Thus, the overfitting issue of the most complex models seems less important than the improvements 
in the goodness-of-fit.

Regarding the parameters of the cost frontiers, generally all the first-order coefficients 
have the expected sign and their magnitudes are also reasonable from a theoretical standpoint. The 
first-order coefficients of all three outputs are positive and statistically different from zero.13 A sim-
ilar observation can be made with respect to the coefficients of input prices, which are also positive 
and statistically significant. The frontier coefficient of OH is negative and statistically significant in 
all models, indicating that the larger the percentage of overhead lines, the smaller is the total cost. 
Dimitropoulos and Yatchew (2017) found that underground cables tend to reduce the operating costs 
of firms. These two results together reflect the considerably higher capital costs of underground 
cables.

The sum of the first-order coefficients of customer numbers and energy delivered allows 
us to measure density economies, associated with vertical output, i.e. output expansions that do not 
require additional network in the existing service areas. We find that the elasticity of density evalu-
ated at the sample mean is quite similar in all models, i.e. 0.48. The estimated coefficients for these 
two outputs in Table 4 indicate that electricity distribution networks have strong natural monopoly 
characteristics. In contrast, scale economies are associated with horizontal output expansions that 
require enlarging the existing network. These economies can be measured by the sum of cost elas-
ticities with respect to customer numbers, energy delivered and network length. The elasticity of 
scale evaluated at the sample mean in both models is about 0.94. This value suggests that Norwegian 
electricity distribution networks still exhibit natural monopoly characteristics when the network is 
expanded to meet new demand.14

In addition to the frontier parameters, Table 4 displays the coefficients of the variables 
that are related to the inefficiency term. The lack of significance of the coefficient of OH seems to 
indicate that the firms with a relatively large proportion of overhead lines (more likely to be serving 
rural areas) have been managed similarly to those firms with more underground lines (more likely 
to be serving urban areas).

Following Orea and Jamasb (2017), in addition to the percentage of overhead lines, we 
have included the logs of the network length (NL) in order to capture the size effects on firms’ ineffi-
ciency, and the number of substations (ST) as a proxy for network complexity. As mentioned in our 
previous paper, we obtain a negative and statistically significant coefficient for NL, indicating that 
larger utilities tend to be more efficient than smaller utilities. In contrast, the positive coefficients of 
ST indicate that it is costlier to manage firms with more stations.

5.3. Efficiency Scores

Table 5 presents the summary statistics of the efficiency scores. The estimated efficiency 
estimates are high, on average about 92% using our preferred model (Spatial SFA 3). The high level 

13.  The traditional collinearity between the number of customers and energy delivered in our application is not severe 
(the correlation is 86%). This explains why we found positive and significant coefficients for both output variables. Interest-
ingly, while we found a strong correlation (over 97%) for larger firms in the sample as in Jamasb et al (2012) using UK data, 
the collinearity between these two output variables is much less for smaller firms. This explains why dropping the energy 
delivered variable in our model is rejected using any model selection test.

14.  These results are in line with the actual features of the Norwegian electricity distribution networks. While Norway 
has one of the highest levels of per capita energy consumption in the world, with the exception of a few cities, the number of 
network utilities is large relative to the population and, on the whole, the customer density across the networks is generally 
low.
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of efficiency of this industry is attributable to the maturity of the regulator’s economic regulation 
that has consistently been supervising and incentivizing the utilities to perform efficiently.15 Similar 
figures are obtained in Orea et al. (2015) using a SFA approach for the period 2004 to 2011, Miguéis 
et al. (2012) using a DEA method for the period 2004 to 2007, and in Growitsch et al. (2012) using 
a SFA approach for the 2001–2004 period.

On the other hand, it should be pointed out that the estimated efficiency levels in the mod-
els with spatial interactions (about 92.5%), are slightly higher than those obtained using the single 
SFA model (on average 91.6%), indicating that ignoring the omitted variables of a spatially cor-
related nature tends to underestimate the firms’ efficiency scores. However, the small difference 
found between the single and the spatial SFA models might be suggesting that this bias is not severe. 
We observe in the next subsection that this is not the case.

5.4. Complementarities of Spatial and Panel Data Models

We examine in this subsection the complementarities between our spatial model and the 
panel data models that take advantage of different (spatial vs. temporal) dimensions of our data. 
In particular, we examine whether there are spatial spillovers once we control for firm-specific but 
time-invariant effects in a panel data SFA setting, using the TFE and TRE panel stochastic frontiers 
introduced by Greene (2005) and a Mundlak (1978)-type specification of our more comprehensive 
pooled model in Table 4 (that we label hereafter as the Pooled model).

The parameter estimates of these models are shown in Table 6. As expected, the TRE 
model yields similar results as our Pooled model because both models use the same variation of the 
data and are inconsistent if the firm-effects are correlated with the regressors. As anticipated in the 
introduction section, the fixed-effect based estimators are problematic in our application due to the 
presence of slowly changing variables. Indeed, both the TFE and the Mundlak specification of our 
pooled model yield negative coefficients for the most important output (i.e. the number of custom-
ers) of the cost function of the electricity distribution utilities. The coefficient of the energy deliv-
ered is still positive, but now it is not statistically significant. For this reason, the results (especially 
the frontier parameters) of these models should be interpreted with caution.

Although the frontier results of the panel data models should be interpreted with extreme 
caution, the estimated coefficients of the spatial variables have similar signs to those estimated in the 
pooled models, and many of them are still statistically significant. This implies that, conditional on 
the existence of (fixed or random) firm-specific effects, we find that still there are spatially omitted 

15.  As the efficiency level of the Norwegian networks is high, we have only found a slight improvement in the efficiency 
of the firms over time and some reduction in the dispersion of their efficiency. On the other hand, and suggested by an anon-
ymous referee, we have examined whether there is a relationship between the firms’ efficiency scores and affluence of the 
county (or counties) they serve. Using county level data from the StatBank of Norway, we have not found a clear relationship 
between both variables. We found that the most inefficient firms are located in medium wealth counties.

Table 5: Efficiency scores
	 Mean	 Std. Dev.	 Min	 Max	

Single SFA	 0.916	 0.064	 0.535	 0.990	
Spatial SFA 1	 0.923	 0.058	 0.498	 0.987	
Spatial SFA 2	 0.923	 0.057	 0.498	 0.985	
Spatial SFA 3	 0.925	 0.055	 0.485	 0.985	
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variables, not controlled by the individual effects added to the model. This result thus suggests that 
still there is room for unobserved spatial effects in panel SFA models.

5.5. Robustness analysis using weather and geographic data

One advantage of the present application is that the Norwegian energy regulator (NVE) 
has systematically examined the effects of several environmental factors such as geographic and 
weather conditions on cost and service quality performance of the utilities and it has reflected these 
in the cost efficiency benchmarking models used in incentive regulation of these utilities (see, Grow-
itsch et al. 2012; Orea et al. 2015). This information is often not available in most countries because 
collecting the relevant environmental data requires a substantial effort and financial resources as 

Table 6: Second stage parameter estimates. Panel data specifications.
	 Pooled		  TRE		  TFE		  Pooled+Mundlak		

Parameters	 Estimates	 t-ratio	 Estimates	 t-ratio	 Estimates	 t-ratio	 Estimates	 t-ratio	

Frontier coefficients
Intercept	 10.521 	 745.21 	 	 	 	 	     10.320 	 77.81 	
lnCUS	 0.271 	 10.30 	 0.378 	 30.01 	 –0.117 	 –1.21 	 –0.104 	 –0.66 	
lnNL	 0.561 	 27.53 	 0.478 	 42.58 	 0.242 	 2.79 	 0.385 	 2.31 	
lnDE	 0.148 	 6.55 	 0.105 	 10.33 	 0.027 	 0.68 	 0.020 	 0.24 	
OH	 –0.285 	 –4.68 	 –0.226 	 –7.63 	 –0.503 	 –3.61 	 –0.539 	 –1.92 	
0.5·lnCUS2	 0.121 	 5.67 	 0.086 	 5.78 	 –0.009 	 –0.18 	 0.002 	 0.02 	
0.5·lnNL2	 –0.048 	 –0.60 	 0.119 	 2.87 	 0.243 	 1.11 	 0.186 	 0.46 	
0.5·lnDE2	 0.204 	 5.36 	 0.184 	 11.39 	 –0.009 	 –0.16 	 –0.016 	 –0.11 	
0.5·OH2	 0.466 	 0.86 	 1.629 	 6.12 	 1.249 	 1.60 	 0.703 	 0.46 	
lnCUS·lnNL	 0.005 	 0.14 	 –0.028 	 –1.43 	 –0.155 	 –1.38 	 –0.142 	 –0.63 	
lnCUS·lnDE	 –0.113 	 –4.51 	 –0.061 	 –5.59 	 0.000 	 0.00 	 –0.011 	 –0.11 	
LnCUS·OH	 –0.136 	 –1.10 	 0.141 	 2.37 	 0.407 	 1.48 	 0.337 	 0.62 	
lnNL·lnDE	 –0.046 	 –1.02 	 –0.116 	 –5.11 	 –0.035 	 –0.40 	 –0.016 	 –0.09 	
LnNL·OH	 –0.391 	 –1.94 	 –0.663 	 –7.12 	 –0.904 	 –2.65 	 –0.723 	 –1.03 	
LnDE·OH	 0.506 	 3.47 	 0.453 	 6.56 	 0.376 	 1.92 	 0.389 	 0.83 	
lnPK	 0.263 	 13.81 	 0.262 	 27.77 	 0.218 	 16.30 	 0.229 	 10.65 	
lnPL	 0.661 	 17.79 	 0.661 	 27.33 	 0.711 	 30.51 	 0.690 	 18.15 	
Spillover variables
Z	 0.999 	 11.18 	 0.939 	 21.34 	 0.634 	 7.78 	 0.784 	 8.42 	
Z·N	 –0.150 	 –3.84 	 –0.065 	 –3.01 	 –0.037 	 –1.07 	 –0.147 	 –3.78 	
Z·WlnNL	 –0.299 	 –2.22 	 –0.124 	 –1.82 	 –0.085 	 –0.90 	 –0.351 	 –2.75 	
Z·WOH	 0.109 	 0.59 	 –0.122 	 –1.63 	 –0.115 	 –0.96 	 0.228 	 1.29 	
Z·WlnST	 0.229 	 1.83 	 0.078 	 1.27 	 0.046 	 0.55 	 0.263 	 2.23 	
Log of standard deviation of disturbance
lnsv	 –2.181 	 –48.51 	 –2.771 	 –21.07 	 –2.785 	 –69.97 	 –2.197 	 –49.30 	
Log of standard deviation of half-normal
lnsu	 –2.463 	 –10.08 	 –0.063 	 –0.30 	 –3.994 	 –4.33 	 –2.602 	 –8.97 	
lnNL	 –1.497 	 –3.18 	 0.502 	 1.83 	 0.889 	 0.77 	 –1.803 	 –3.18 	
OH	 –0.168 	 –0.45 	 –0.624 	 –2.33 	 2.198 	 1.18 	 1.612 	 1.91 	
lnST	 1.008 	 2.54 	 –0.636 	 –2.48 	 –1.403 	 –1.04 	 1.284 	 2.70 	
Random effect
Mean(ai)			   10.553 	 1349.7 					   
sd(ai)			   0.114 	 46.84 					   

Mean LF	 0.621	 	  1.013	 	  1.322	 	  0.659	 	
Observations	 1032	 	  1032	 	  1032	 	  1032		  
LF	 640.43	 	  1045.44	 	  1364.17	 	  679.77		
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well as time. Therefore, our results in previous subsections—that, on purpose, ignore weather and 
geographic information - are the likely outcomes that one could expect in other applications to 
electricity distribution, or indeed in other utilities sectors such as gas and water, where the regulator 
does not have access to W&G data.

However, in our application, we have the benefit of having data on some key environmen-
tal factors to test the robustness of our empirical strategy based on spatial econometric techniques to 
capture the effect of omitted variables on the costs of neighbouring utilities. Our robustness exercise 
only attempts to compare the estimated spatial SFA models in subsection 5.2 with a simple SFA 
model that includes a set of weather and geographic variables. The complete model (hereafter W&G 
SFA model) is used to produce a type of a counterfactual scenario, which is not readily available in 
many other applications. As many of the W&G variables are spatially correlated (see Appendix A), 
we expect similar efficiency scores using a (non-spatial) model that includes W&G cost drivers and 
a spatial model that “replaces” the W&G data (often not available) with data from surrounding firms 
using spatial econometric techniques.

The parameter estimates of the W&G SFA model are shown in Appendix B. In our W&G 
SFA model, we extend the previous set of cost drivers with several W&G variables. In particular, 
we include three weather variables (WIND, WINDEX, and DIS),16 and three geographical variables 
(FOREST, AVESLOPE, and MAXSLOPE). This appendix also includes the results of an extended 
version of our previous spatial SFA3 model where we have now added W&G variables. This model 
(hereafter W&G spatial-SFA3 model), will allow us to examine whether omitted variables that are 
spatially correlated are still present.

Overall, our new results indicate that weather is an important in determining cost efficiency 
in this sector as the estimated coefficients for the weather variables are always significant. For in-
stance, we find that a higher exposure to wind conditions implies larger costs for the distribution net-
works. On the other hand, the coefficient of the distance to the coast is negative as expected because 
inland weather conditions are likely to be less severe than coastal weather conditions. Our results 
also indicate that some geographic features of the terrain on which the networks are supported (i.e. 
forestry and maximum terrain slope), are also important determinants of cost efficiency. Finally, it 
is worth mentioning that all coefficients associated to ˆ

itZ , are not statistically significant, except for 
ˆ

itZ  alone whose coefficient is slightly larger than unity.
Figure 3 compares the individual efficiency scores that are obtained using the four models 

in Table 4 that do not include any environmental variable (see “dot” observations), with the scores 
that are obtained using the W&G SFA model in Appendix B (see “cross” observations), which 
serves as a benchmark model because it includes relevant environmental variables. This figure re-
lates several interesting stories.

First, most observations in Figure 3 are above the bisecting line, indicating that the effi-
ciency scores of a simple SFA Model tend to be downward biased if either spatial effects or W&G 
variables are ignored. This result has been partially highlighted in the previous subsection. How-
ever, Figure 3 now shows that the bias is much larger when the efficiency scores are small. This 
implies that the most inefficient firms in a simple SFA specification of firms’ cost would be wrongly 
penalized in an incentive regulated framework.

The second story has to do with the evolution of firms’ efficiency scores when we move 
from simpler to more comprehensive models. Indeed, it is apparent in Figure 3 that we move closer 
to the benchmark efficiency scores when we add spatially generated variables as cost determinants. 

16.  We use the geographic variable (DIS) in order to capture the effect of coastal climate on the networks. In Norway, this 
effect is related to problems with corrosion on network components normally caused by a combination of wind and salt water.
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Moreover, the efficiency scores of the Spatial SFA3 model (the yellow dots) are quite close to the 
efficiency scores of the W&G SFA model (see the cross observations). This implies that we have 
been able to (almost) reproduce the same results as a SFA model that includes a set of relevant 
environmental variables that are not available in many cases. This result thus suggests that when 
W&G data are not available, this lack of information can likely be compensated by using data from 
surrounding firms using spatial econometric techniques.

Finally, in Figure 4 we compare the individual efficiency scores obtained using the non-spa-
tial W&G SFA model and the W&G spatial-SFA3 model that extends our previous spatial SFA3 
model by including W&G variables. We find that both efficiency scores are quite similar. This result 
indicates that, once we have controlled for W&G variables, the remainder of the spatially correlated 
omitted variables are of little importance. In other words, most of the omitted information that is 
spatially correlated has to do with environmental conditions. In summary, we have shown that the 
spatial econometric techniques can offer an effective and efficient possibility to control for this issue 
without recurring to the collection of costly weather and environmental data.

6. CONCLUSIONS

This paper provides an innovative approach for measuring efficiency when spatially cor-
related omitted variables play an important role in firms’ efficiency. The paper also provides an ex-
ample of its application to the electricity distribution sector. However, the proposed method can be 
applied to measure efficiency in other sectors where unobservable cost drivers (e.g., environmental 
variables) are also very relevant, e.g. gas, water, agriculture, fishing.

This study combines stochastic frontier and spatial econometric techniques to evaluate 
a firm’s efficiency in the Norwegian electricity distribution sector, taking into account spatially 

Figure 3: Efficiency scores

Note: Efficiency scores of the Simple SFA model in the horizontal axis.
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correlated omitted variables. In doing so, first we propose estimating a spatial econometric model 
to obtain a proxy for this type of variable by means of the available data for neighbouring utilities. 
Next we plug the variable generated into a standard SFA model. We illustrate our approach using 
panel data for the Norwegian distribution utilities for the years 2004 to 2011. In order to implement 
our empirical strategy, we have matched the information on concession areas of distribution utilities 
with the data provided by the Norwegian regulator on firms’ costs. We are not aware of other studies 
that have carried out a similar spatial matching exercise.

We find that the coefficient of the spatial correlation is significant in our auxiliary re-
gression, indicating that the unobserved cost drivers are correlated. This result justifies the use of 
neighbouring firm data in order to control for unobserved cost drivers in our application. Next, the 
estimated stochastic cost frontier that includes our generated variable outperforms the model that 
excludes the omitted cost drivers. In this sense, as expected, the firm efficiency scores are larger 
when we include our proxy for the omitted variables, especially for firms that are more inefficient. 
In an incentive regulation framework, the upshot is that the latter types of firms are likely to be more 
severely penalized when the effect of this variable is not taken into account.

One advantage of the present study is that the Norwegian energy regulator has collected 
data on a set of W&G variables. In many countries, this information is not readily available. As 
some environmental data is available in our application, we have been able to produce a type of a 
counterfactual scenario to examine the robustness of our empirical strategy. We have found that our 
spatial SFA model is able to roughly reproduce the efficiency scores of a more comprehensive model 
that includes the W&G variables that are not available in many applications. That is, we find that 
this lack of information can fairly be compensated with data from surrounding firms using spatial 
econometric techniques. Finally, we have detected that most of the omitted information that is spa-
tially correlated has to do with environmental conditions.

Figure 4: Efficiency scores using W&G data 

Note: Efficiency scores of the Simple SFA model in the horizontal axis.
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We have also examined the complementarities between our approach that takes advantage 
of the spatial structure of the data to deal with omitted but spatially correlated variables, and several 
panel-data SFA models aiming also to control for unobserved but time-invariant variables. We have 
found that the frontier results should be interpreted with caution when fixed-effect estimators are 
used due to the lack of temporal variation of our data. However, the main conclusion that we get 
from these panel data SFA models is that still there are spatially omitted variables not controlled by 
the firm-specific effects.

Our approach is useful in utilities sectors where collecting environmental data requires 
substantial human or financial resources as well as time. However, this approach presents some 
limitations. For instance, our methodology should perform better with a large number of distribution 
service areas or firms as the environmental conditions in surrounding areas are likely to be similar, 
i.e. their spatial correlation is likely to be larger than in applications with a small number of firms 
with large service areas (e.g., in the UK and Spain) where environmental conditions within given 
service areas are not homogeneous. On the other hand, the spatial lags can be interpreted as aver-
ages for the surrounding areas. We use these average values to obtain predictions of the underlying 
environmental conditions that are not observable by the researcher or the regulato. Therefore, our 
predictions should improve as the number of observations used to compute the average values (i.e. 
the number of surrounding firms) increases. The methodology is also useful in applications with 
few firms if data on the distribution units of each firm is available. This is, for instance, the case in 
Coelli et al (2013) that use data on the 92 electricity distribution units operated by ERDF in France.

The proposed methodology does not likely perform well in cross-country studies where 
utilities may be exposed to different environmental conditions as the spatial correlations of envi-
ronmental conditions across countries tend to be weaker. In this regard, we are assuming that the 
definition of the Z variable in our model is the same for all observations and, hence, that the set of 
environmental conditions captured by Z variable in surrounding areas are similar. The main difficul-
ties in cross country analysis include currency conversions, different technical as well as economic 
definition of variables, differing regulatory constraints and objectives (Jamasb et al, 2008; Jamasb 
and Pollitt, 2003).

Finally, this paper opens a new research field in the context of regulated utilities if we refo-
cus the model to study different spillovers among utilities. Indeed, as pointed out by a former referee, 
the lack of causal spatial spillovers seems to contradict a body of economic and business-strategy 
literature suggesting that firms benefit from best practices implemented in their adjacent firms. This 
literature is more focused on the knowledge and R&D spillovers between firms than in mature and 
regulated industries. These benefits might also have a non-spatial nature. For instance, in an incen-
tive-based regulation framework, the benefits from best practices are likely to come from firms that 
are “peers” in a benchmarking exercise. On the other hand, if the peers are not observed, the spill-
overs might stem from firms of similar size, because peers should have similar characteristics than 
the evaluated firm in order to control for differences in scale economies. Future research can adapt 
the spatial nature of our proposed approach to study such spillover effects in the utilities sectors.
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APPENDIX A

Spatial correlations of the main cost drivers. OLS auxiliary regressions
Regression	 Coef.	 t-ratio	

Customer numbers		   	 
 	 Intercept	 –0.1356***	 –2.75	
 	 Spatial lag	 0.0816***	 6.48	
 	 R2	 0.0392	 

Network Length		   	 
 	 Intercept	 –0.0571	 –1.44	
 	 Spatial lag	 0.0443***	 3.41	
 	 R2	 0.0111	 

Delivered Energy		   	 
 	 Intercept	 –0.0861*	 –1.89	
 	 Spatial lag	 0.0677***	 5.92	
 	 R2	 0.0329	 

Overhead lines (%)		   	 
 	 Intercept	 –0.0048	 –0.83	
 	 Spatial lag	 0.1482***	 14.43	
 	 R2	 0.1683	 

Wind		   	 
 	 Intercept	 26.2482***	 140.30	
 	 Spatial lag	 –0.0061***	 –4.37	
 	 R2	 0.0183	 

Wind Exposure		   	 
 	 Intercept	 5.4931***	 70.78	
 	 Spatial lag	 –0.0086***	 –3.04	
 	 R2	 0.0089	 

Distance to coast (in logs)			   
 	 Intercept	 8.3434***	 79.73	
 	 Spatial lag	 0.0328***	 17.60	
 	 R2	 0.2314	 

Forest		   	 
 	 Intercept	 –0.0367	 –0.47	
 	 Spatial lag	 0.0448***	 3.26	
 	 R2	 0.0103	

AveSlope		   	 
 	 Intercept	 6.7957***	 33.00	
 	 Spatial lag	 0.0657***	 18.58	
 	 R2	 0.2512	

MaxSlope			   
 	 Intercept	 37.9739***	 50.63	
 	 Spatial lag	 0.0505***	 19.31	
 	 R2	 0.2659	
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APPENDIX B

SFA models with W&G variables
	 W&G SFA	 	  Spatial W&G SFA	 	

Parameters	 Estimates	 t-ratio	 Estimates	 t-ratio	

Intercept	 10.668	 101.334	 10.595	 107.749	
lnCUS	 0.295	 10.979	 0.285	 10.954	
lnNL	 0.523	 22.291	 0.539	 24.433	
lnDE	 0.148	 6.143	 0.142	 6.169	
OH	 –0.181	 –2.923	 –0.259	 –4.483	
0.5·lnCUS2	 0.108	 5.117	 0.101	 4.999	
0.5·lnNL2	 –0.108	 –1.150	 –0.154	 –1.730	
0.5·lnDE2	 0.193	 4.861	 0.168	 4.659	
0.5·OH2	 0.822	 1.388	 0.548	 0.979	
lnCUS·lnNL	 0.040	 0.980	 0.058	 1.523	
lnCUS·lnDE	 –0.123	 –4.591	 –0.128	 –4.902	
LnCUS·OH	 –0.142	 –1.124	 –0.194	 –1.538	
lnNL·lnDE	 –0.028	 –0.583	 –0.002	 –0.048	
LnNL·OH	 –0.365	 –1.625	 –0.244	 –1.163	
LnDE·OH	 0.500	 3.324	 0.449	 3.141	
lnPK	 0.273	 14.427	 0.268	 14.470	
lnPL	 0.667	 17.661	 0.663	 18.500	
Z	 	 	   1.195	 10.512	
Z·N	 	 	   –0.080	 –1.615	
Z·WlnNL	 	 	   0.050	 0.298	
Z·WOH	 	 	   –0.153	 –0.694	
Z·WlnST	 	 	   –0.051	 –0.343	
WIND	 –0.015	 –4.667	 –0.014	 –4.766	
WINDEX	 0.041	 4.536	 0.045	 5.250	
lnDIS	 –0.017	 –4.191	 –0.016	 –3.965	
Forrest	 0.008	 2.745	 0.008	 2.866	
AveSlope	 0.002	 0.854	 0.001	 0.224	
MaxSlope	 0.003	 3.706	 0.004	 4.493	
 	 	 	 	    
lnsv	 –2.147	 –52.673	 –2.235	 –52.423	
 	 	 	 	    
lnsu	 –2.600	 –10.736	 –2.497	 –12.658	
lnNL	 –2.138	 –3.770	 –1.847	 –3.967	
OH	 0.017	 0.039	 –0.114	 –0.300	
lnST	 1.602	 3.278	 1.371	 3.383	

Mean log-likelihood	 0.608	 	  0.668		  
Observations	 1032	 	  1032	 	
LF	 627.159	 	  689.086		


