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Forecasting China’s Carbon Intensity: Is China on Track to 
Comply with Its Copenhagen Commitment?

Yuan Yanga, Junjie Zhangb, Can Wanga,*

ABSTRACT
In the 2009 Copenhagen Accord, China agreed to slash its carbon intensity (car-
bon dioxide emissions/GDP) by 40% to 45% from the 2005 level by 2020. We as-
sess whether China can achieve the target under the business-as-usual scenario by 
forecasting its emissions from energy consumption. Our preferred model shows 
that China’s carbon intensity is projected to decline by only 33%. The results im-
ply that China needs additional mitigation effort to comply with the Copenhagen 
commitment. The emission growth is more than triple the emission reductions that 
the European Union and the United States have committed to in the same period.
Keywords: Climate change, Carbon dioxide emissions, China, Spatial 
econometrics.
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1. INTRODUCTION

China faces two crucial challenges in tackling climate change. On the one hand, China is 
one of the most vulnerable countries to the risks of climate change (IPCC, 2007). On the other hand, 
China is the world’s largest emitter of carbon dioxide (CO2) and it will continue to be the major driv-
ing force of global emissions in the future (IEA, 2012; EIA, 2013). In response to the domestic and 
international pressures on climate change, China has committed to a 40% to 45% reduction target in 
carbon intensity, defined as CO2 emissions per unit of GDP, by 2020 relative to its 2005 level. The 
pledge has been incorporated into the 2009 Copenhagen Accord.1 In November 2014, under the joint 
commitment between China and the United States to combat climate change, China has further an-
nounced to peak its carbon emissions by around 2030.2 This ambitious but challenging goal releases 
a clear signal of China’s determination to mitigate emissions beyond 2020. However, the level 
of China’s peak emissions as well as the effort needed to tame China’s surging emissions to peak 
beyond 2020 firstly depends on how well China could do in the following years till 2020, or to be 
specific depends on whether the 2020 carbon intensity target can be overshot or only underachieved.

China’s carbon intensity has been declining rapidly over decades, which explains why it 
favors an intensity target. The central policy question is whether China’s Copenhagen commitment 

1.  Source: https://unfccc.int/meetings/copenhagen_dec_2009/items/5262.php.
2.  Source: http://www.reuters.com/article/2014/11/12/us-china-usa-climatechange-idUSKCN0I W07Z20141112
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can accelerate this natural decline (Qiu, 2009). In order to determine whether China’s Copenhagen 
commitment is additional,3 we need to forecast its emission trajectory under the baseline scenario. 
The knowledge of an emission baseline is essential to assess the additional mitigation effort required 
for compliance. Furthermore, China’s compliance with the Copenhagen commitment hinges on its 
provinces’ performance on carbon intensity. To the best of our knowledge, there has not been an 
assessment whether Chinese provinces can achieve their carbon intensity targets. To close the gap 
in the literature, we use reduced-form econometric models to forecast emission intensities at both 
the national and provincial level.

Our paper is motivated not only by the emerging policy question whether China’s carbon 
intensity target is binding, but also by the growing economics literature on carbon dioxide emission 
forecasting (Holtz-Eakin and Selden, 1995; Schmalensee, Stoker, and Judson, 1998; Auffhammer 
and Carson, 2008; Auffhammer and Steinhauser, 2012). In particular, our paper extends the influen-
tial forecasting analysis of China’s CO2 emissions by Auffhammer and Carson (2008). We contribute 
to the existing literature by a novel synthesis of the recent development in spatial econometrics, data 
generation by the engineering approach, and setting policy scenarios from government documents. 
First, we forecast provincial emissions by exploiting a large set of spatial econometric models to ex-
plicitly account for spatial-temporal dynamics of CO2 emissions. Including spatial spillover effects 
significantly improves forecasting performance especially for a long horizon. 

Second, we have constructed a balanced panel data set of provincial CO2 emissions from 
1985 to 2011. An aggregate forecast constructed by first obtaining estimates for units at a spatially 
disaggregated level and then aggregating them to obtain an estimate of the desired total quantity, of-
ten results in a higher quality forecast than direct estimation of the desired total (Marcellino, Stock, 
and Watson, 2003; Carson, Cenesizoglu, and Parker, 2011). This is particular true when the units 
at the disaggregated level exhibit some parameter heterogeneity. The use of provincial information 
also allows for emission forecasting for each individual province. Furthermore, the data allow us to 
forecast energy consumption directly, which is used as a robustness check.

Third, we utilize a rich set of policy information in the national and provincial 12th Five-
Year Plans (FYPs, 2011–2015) for emission forecasting. Provincial socioeconomic planning is 
closely linked to regional economic and energy consumption trajectories (Huang and He, 2011; Liu 
et al., 2013). Understanding the governmental development plans enables us to construct realistic 
BAU scenarios instead of using arbitrary assumptions.

Using the above empirical strategy, we forecast China’s carbon intensity in 2020 to be 
32.8% below the 2005 level. It implies that China would be short of the 40%–45% Copenhagen 
target under the BAU scenario. Most provinces are unlikely to achieve the intensity targets without 
additional mitigation efforts. Only five provinces are likely to meet their targets in the 12th FYPs and 
only nine provinces are likely to accomplish the Copenhagen commitment. In particular, the less 
developed central and western provinces will miss the targets significantly, partly reflecting their 
fast paced industrialization. Nonetheless, caution is needed to interpret the provincial-level results 
because the point forecasts of some provinces are associated with relatively large uncertainties.

Furthermore, we forecast China’s baseline CO2 emissions to increase by 56.2% from 2011 
to 2020. The emission increase is about 3 to 3.7 times of the total committed emission reductions 
from the European Union and the United States in the same period. In comparison, both the Interna-
tional Energy Agency (IEA) and the U.S. Energy Information Administration (EIA) reported much 

3.  In the context of climate change, additionality is referred to as the mitigation effort that would not have occurred in 
the absence of an climate program. Additionality is a major concern in the design of the baseline-and-credit program such as 
the Clean Development Mechanism, a project-based carbon market created by the Kyoto Protocol (Zhang and Wang, 2011).
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lower emission forecasts. The emission growth rate predicted by IEA (2012) is only about half of 
what we predict, despite its relatively optimistic assumption of GDP growth and further consider-
ation of new policies in baseline scenario. IEA assumes that China can reduce carbon intensity by 
17% during the 12th FYP period while our forecast 8.8% is only about half of that estimate. Although 
EIA (2013)’s forecast is the highest among the existing studies, it is still 2.1 billion metric tons lower 
than our forecast for 2020. This gap is about twice of Japan’s energy-related CO2 emissions in 2011. 
EIA forecasts the annual emission growth rate between 2010 and 2020 to be only 3.9%. However, 
the actual annual growth rate in 2011 was 9.0%. Therefore, both IEA and EIA appear to be too op-
timistic about China’s future emission growth.

The remainder of the paper is arranged as follows. Section 2 illustrates the background. 
Section 3 describes the data, variables, and scenario. Section 4 explains the model specification, 
estimation, forecasting, and selection. Section 5 presents the estimation results and section 6 the 
forecast results. Section 7 gives further discussion, and section 8 concludes.

2. BACKGROUND

China’s soaring greenhouse gas (GHG) emissions over the last decade have contributed to 
65% of the world’s emission growth. As early as 2007, China overtook the United States to become 
the world’s largest emitter.4 With further economic development that heavily relies on energy use, 
China’s CO2 emissions will keep rising at a fast pace. To address the dual challenges of climate 
change risks and international pressures on mitigation, China has made energy conservation and 
low-carbon development key national strategies. In the 12th FYP (2011–2015), China sets a 17% 
carbon intensity reduction target to ensure China’s compliance with the Copenhagen commitment 
to reduce carbon intensity by 40%–45% below the 2005 level by 2020.

Provinces are required to achieve differentiated targets in both energy and carbon inten-
sities. In the 12th FYP, the carbon intensity reduction target varies from 10% to 19% based on the 
stage of economic development for each province and the negotiations between the central and 
provincial governments.5 Because the regional allocation of reduction targets is not tied to the base-
line emission scenarios, the mitigation burden may be neither efficiently nor equitably distributed 
across provinces. Some provinces are likely to achieve the targets in the BAU scenario while other 
provinces will need significant mitigation efforts. 

Nearly half of China’s CO2 emissions are from the “six most energy-intensive industries” 
in the secondary industry.6 These industries were extensively regulated in order to achieve the en-
ergy intensity target in the 11th FYP. The regulatory policies include shutdown of inefficient small 
plants and even blackouts to limit electricity usage. With the ending of the 11th FYP, however, the 
output value share of the “six most energy-intensive industries” in the secondary industry rebounded 
by 1% from 2010 to 2011, almost offsetting the decline in the 11th FYP. As a result, the annual rate of 
decline in national carbon intensity slowed down from –4.1% in 2010 to –0.4% in 2011.7 Similarly, 

4.  IEA’s statistics (available at: www.iea.org/statistics) show in 2007 China’s emissions are 6.08 billion metric tons, 
while US’s emissions are 5.85 billion metric tons.

5.  Issued by the State Council of China, available at: www.gov.cn/zwgk/2012-01/13/content_2043645.htm.
6.  The six most energy-intensive industries are: (1) processing of petroleum, coking, processing of nuclear fuel, (2) man-

ufacture of raw chemical materials and chemical products, (3) manufacture of non-metallic mineral products, (4) smelting 
and pressing of ferrous metals, (5) smelting and pressing of non-ferrous metals, and (6) production and supply of electric 
power and heat power.

7.  This is calculated from provincial statistics, which means the national GDP and emissions are computed as the sum of 
provincial figures. If using national statistics, the two numbers are –5.5% and –0.2%.

http://www.iea.org/statistics
file:///F:\work\1.project\20130128region_CO2_forecast-zjj\20140105Rblup\8.final\Paper_final0422转投energy\www.gov.cn\zwgk\2012-01\13\content_2043645.htm
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for provinces, the declining trend of carbon intensities before 2010 slowed down or even reversed 
in 2011 (Figure 1). In particular, the output value share of the six most energy intensive industries in 
the secondary industry increased the most in Qinghai, Hainan, and Ningxia provinces (4.1%, 3.2%, 
and 2.3%) from 2010 to 2011. Correspondingly, their carbon intensities increased by 24.1%, 9.2%, 
and 6.3% respectively. Therefore, strong and continuous growth of energy intensive sectors will 
serve as a serious impediment to curbing China’s CO2 emissions.

Although China’s central government is promoting the so-called low-carbon development 
policy, it is facing great challenges from the sub-national level. Many provincial governments still 
put the highest priority on GDP growth and lack incentives to control the fast expansion of energy 
intensive sectors. To boost economic growth, some less developed inland provinces even provide 
preferential policies to attract pollution- and energy-intensive industries transferred from developed 
coastal provinces. Under the national strategy to stimulate economic growth in central and western 
China, these provinces may become the carbon hotspots of the future.8

3. DATA AND VARIABLES

3.1 Data

We use provincial data to forecast China’s CO2 emissions, not only because using disag-
gregated data can increase forecasting efficiency (Marcellino, Stock, and Watson, 2003), but also 
because sub-national emission forecasting is relatively less studied. Since China’s CO2 emission 
inventory for provinces is not available, we calculate carbon emissions from energy consumption 
and carbon emission factors following the IPCC guidelines (IPCC, 2006). In calculating emissions 
at the sub-national level, inter-regional power transmission leads to the question whether the emis-

8.  China launched the “Western Development Strategy” and “Rise of Central China Plan” to accelerate the development 
of central and western China.

Figure 1: Carbon intensities of provinces from 2009 to 2011
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sions associated with the transmitted power should be ascribed to production or consumption side. 
No official guidelines are available on this issue. To avoid inconsistency between consumption level 
and emissions, we ascribe the CO2 emitted from the transmitted power across provinces to the con-
sumption side (Huang and He, 2011; Liu et al., 2013).

The provincial CO2 emissions data used in this paper cover the years from 1985 to 2011. 
The data are computed from two sources. The first source is the China Energy Statistical Yearbooks 
that provide energy balance sheets for provinces in 1985 and from 1995 to 2011. These statistics 
enable us to compute the consumption side CO2 emissions for provinces. However, the China En-
ergy Statistical Yearbooks do not publish energy balance sheets for provinces from 1986 to 1994. In 
addition, the energy balance sheets for Ningxia from 2000 to 2002 and for Hainan in 1985 and 2002 
are missing. The energy balance sheets for Sichuan province in 1985, 1995, and 1996 cannot be 
used, because Chongqing was still a part of Sichuan then and became a municipal city since 1997.

We use provincial statistical yearbooks to supplement the missing data (see Appendix A 
for more details). In this way, we can impute most of the missing data in the first data source. How-
ever, ten data points are still missing because the corresponding final energy consumption data by 
fuel type are not provided in the provincial statistical yearbooks.9 The ten missing data points are 
imputed using cubic spline interpolation. Finally, we have a balanced panel data set of provincial 
CO2 emissions from 1985 to 2011.

Since we have to make assumptions in calculating provincial emissions whenever the en-
ergy balance sheets are not available, we conduct a robustness check by using the provincial energy 
consumption data from 1985 to 2011 to forecast energy consumption directly. The China Energy 
Statistical Yearbooks provide aggregate energy consumption data at the provincial level from 1985 
to 1990 and 1995 to 2011. For the year from 1991 to 1994, the aggregate energy consumption data 
of provinces are obtained from the provincial statistical yearbooks. Therefore, we have a balanced 
panel data set of provincial energy consumption from 1985 to 2011.

3.2 Key Variables

Most literature uses per-capita emissions (emissions/population) as the dependent variable 
(see Holtz-Eakin and Selden (1995) and Schmalensee, Stoker, and Judson (1998)). The intensity 
form dependent variable (emissions/GDP) is also widely used in the literature on economy-emis-
sion-energy nexus (Cole, Elliott, and Shimamoto, 2005; Fisher-Vanden et al., 2004). Considering 
that China’s national and provincial emission targets are intensity based, we use carbon intensity as 
the dependent variable in forecasting.

Many variables can be used to explain the relationship between economy and emissions. 
We use per-capita GDP (Inc) as a general indicator of economic development status. GDP is in 
2005 constant values. We also include additional variables to increase explanatory power for the 
emission dynamics. The ratio of the secondary industry in GDP (Ind) is used to account for the 
structural effect. Rapid urbanization in China also greatly changes the energy use in production and 
consumption (Dhakal, 2009). Because the data on urban population are not available for the whole 
period from 1985 to 2011, we use population density (Popden), which means the population per unit 
area, as a proxy to reflect the urbanization level. The rapid increase of car ownership in China since 
2000 has contributed to the fast growing transport energy demand (He et al., 2005). We use passen-
ger cars per capita (Car) to capture the effect of car ownership on China’s energy consumption and 

9.  The ten data points are Shanghai from 1986 to 1988, Anhui from 1986 to 1989, Hunan in 1986, and Guizhou from 
1986 to 1987.
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emissions. The data on these variables are compiled from various editions of the China Statistical 
Yearbooks from 1986 to 2012 and the China Compendium of Statistics 1949–2008. Due to data 
availability, we focus on mainland China excluding Taiwan, Hong Kong and Macau. Data for Tibet 
is missing, therefore our data have 30 provinces and municipalities. Because Tibet only accounts for 
0.05% of total national electricity consumption and 0.1% of national GDP, we expect the missing 
data of Tibet will not cause a major problem.

4. MODEL

Two strands of literature exist for emission modeling and forecasting. The first category 
employs calibrated structural models to simulate future emissions. Examples include bottom-up 
models in the engineering literature (IPCC, 2000; EIA, 2013) and computable general equilibrium 
(CGE) models in the economics literature (Jorgenson and Wilcoxen, 1993; Garbaccio, Ho, and 
Jorgenson, 1999). However, the performance of a structural model depends on the credibility of the 
structural assumptions and the availability of a large set of parameters estimated in model or taken 
from elsewhere. It has been argued by some researchers that the IPCC might have underestimated 
anthropogenic emissions by using overly optimistic assumptions in technology (Pielke, Wigley, and 
Green, 2008).

The second category is the reduced-form econometric modeling, which requires less data 
and makes fewer structural assumptions. Formal model comparison in a statistical sense is possible 
for the reduced-form approach because longer time-series data can be used. In addition, the uncer-
tainties for the point estimates of parameters can be measured through the regression on historical 
data. In contrast, parameter uncertainty is difficult to assess in the structural modeling approach, in 
which parameters are fixed by calibration or subjective judgment (Manne and Richels, 1994). For 
these reasons, we adopt reduced-form models to examine the regional heterogeneity in forecasting 
China’s emissions. 

4.1 Specifications

Provincial carbon dioxide emissions exhibit spatial dependence, which arises as a result of 
technology diffusion and environmental policy spillovers. On the one hand, technology can diffuse 
across regions through inter-regional connections such as trade (Keller, 2004). Then the related 
technological progress is possible to facilitate improvement in local emissions. On the other hand, 
local governments may imitate neighbour’s environmental policies, which leads emission per unit 
of GDP to converge (Fredriksson and Millimet, 2002). As is shown by Giacomini and Granger 
(2004), ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. In 
the forecasting literature, several studies have illustrated that spatial panel data models can improve 
forecasting performance (Girardin and Kholodilin, 2011; Baltagi and Li, 2006; Longhi and Ni-
jkamp, 2007). 

However, the application of explicit spatial models in emission forecasting is still limited 
with the most noted exception by Auffhammer and Carson (2008). Nonetheless, the spillover effects 
in their study were constrained to be with a temporal lag, rather than the contemporaneous spatial 
spillover effects that are usually modeled in spatial econometrics (Anselin, Gallo, and Jayet, 2008). 
Therefore, we account for the two types of spatial dependence in emissions by including a one-pe-
riod lag spatial spillover term or a contemporaneous spatial spillover term. In addition, we allow for 
differences in spillover effects between different groups of provinces. 
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The baseline specification is a dynamic panel data model such that: 

1ln ln .i t i t i t i i tc c ' tρ λ α ε, , − , ,= + + + +x β  (1)

In this form, ci,t is carbon intensity, xi,t is a vector of additional explanatory variables (in-
cluding Inc, Ind, Popden, Car), t is a trend variable represented by the linear time trend (T) or the 
logarithm time trend (lnT), αi is a provincial fixed effect, and εi,t is an error term. Early reduced-form 
models use environmental Kuznets curve to forecast CO2 emissions (Holtz-Eakin and Selden, 1995; 
Schmalensee, Stoker, and Judson, 1998). Recent studies find that the dynamic models are superior 
in terms of forecasting performance (Auffhammer and Carson, 2008; Auffhammer and Steinhauser, 
2012). Therefore, we also adopt the dynamic model specification. 

In spatial econometrics, the spillover effects can be modeled by a spatial lag term, i.e., a 
weighted average of neighbors’ dependent variables, or a spatial error term, i.e., errors with spatially 
correlated covariance structure. The spatial error term does not explicitly capture the spatial inter-
action, but, instead, is a type of spatial heteroskedasticity (Anselin, Gallo, and Jayet, 2008). For this 
reason, we only include the spatial lag.

The spatial dependence is modeled by an N×N spatial matrix W, where N is the number of 
provinces. The i,j-th element of W, wi,j, is the weight given to region i’s neighbor j. We employ two 
spatial matrices: the rook contiguity weight matrix and the inverse distance matrix (Getis, 2010). In 
rook contiguity weight matrix, wi,j equals one if provinces i and j are neighbors and zero otherwise. 
In inverse distance matrix, wi,j is the inverse of distance between the capitals of two provinces. In 
both matrices, wi,j, which is the weight of province i on itself, is set to zero. The spatial weight ma-
trices are row standardized such that each row sum up to 1.

Starting from the baseline model, we first include the one-period lagged spatial spillover 
effects, which is the same spatial model used by Auffhammer and Carson (2008). This model is 

labeled as aglS : 

1 1ln ln ln .i t i t i j j t i t i i t
j i

c c w c ' tρ γ λ α ε, , − , , − , ,
≠

= + + + + +∑ x β  (2)

In addition, we allow for group-specific spillover effects between eastern provinces and 
inland provinces, because eastern provinces are more developed and technologically advanced.10 
The trend variable t is also allowed to be different between the two groups of provinces. This model 
is labeled as ag glS − : 

2 2

1 1
1 1

ln ln ln .g g g g
i t i t i j j t i t i i t

g j i g
c c w c ' tρ γ λ α ε, , − , , − , ,

= ≠ =

= + + + + +∑ ∑ ∑x β            (3)

10.  Eastern provinces include Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guang-
dong, and Hainan. Inland provinces include the rest 19 provinces. In fact, initially we classify the provinces into three groups: 
the eastern provinces, central provinces, and western provinces. However, in the estimation result the coefficients of central 
and western provinces are not significant. If we group the central and western provinces into a single group, i.e. the inland 
provinces, the coefficient is significant. To avoid insignificant coefficients increase the forecast error, we choose to merge the 
central and western provinces into a single group.
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In this form, g indexes province (1 for eastern provinces and 2 for inland provinces); g
,i jw

is an element of the group-specific spatial weight matrix gW , which is the product of the spatial 
weight matrix W and a dummy variable indicating whether province i belongs to group g; gt  is a 
group-specific trend, which equals T or lnT if province i belongs to group g and zero otherwise. 

We also consider a specification with contemporaneous spatial spillover effects, which is 
labeled as conS :11 

1ln ln ln .i t i t i j j t i t i i t
j i

c c w c ' tρ ϕ λ α ε, , − , , , ,
≠

= + + + + +∑ x β  (4)

Moreover, we introduce the group-specific spillover effects in model conS , 
and derive the model that is labeled as gconS − : 

2 2

1
1 1

ln ln ln .g g g g
i t i t i j j t i t i i t

g j i g
c c w c ' tρ ϕ λ α ε, , − , , , ,

= ≠ =

= + + + + +∑ ∑ ∑x β  	       (5)

For the dynamic panel model in Equation (1) to be stable, the requirement is that |ρ|<1. 
Similarly, according to Yu, de Jong, and Lee (2008), for spatial dynamic panel models in Equations 
(2) and (4) to be stable, the requirements are that |ρ|+|γ|<1 and |ρ|+|φ|<1, respectively.

4.2 Estimation and Forecasting

In dynamic panel data models, the lagged dependent variable is an endogenous variable. 
The contemporaneous spatial spillover term further introduces simultaneity bias. Because our panel 
data are short, the OLS (ordinary least squares) estimator can be severely biased. Instead, we use the 
GMM (Generalized Method of Moments) estimator proposed by Arellano and Bond (1991). Taking 
model conS  as an example, the model is estimated in the first-difference form to eliminate provincial 
fixed effects: 

1ln ln ln .i t i t i j j t i t i t
j i

c c w c ' tρ ϕ λ ε, , − , , , ,
≠

∆ = ∆ + ∆ + ∆ + ∆ + ∆∑ x β 	          (6)

Then lagged dependent variables in levels can be used as instruments. In this case, the 
GMM estimator is based on the following moment conditions: 

(ln ) 0, 2,i t s i tE c sε, − ,∆ = ≥ 	                      (7a)

( ln ) 0, 2,i j j t s i t
j i

E w c sε, , − ,
≠

∆ = ≥∑ 	                   (7b)

( ) 0, andi t i tE ' ε, ,∆ ∆ =x 	                     (7c)

( ) 0.i tE t ε ,∆ ∆ = 	                             (7d)

We use the one-step GMM estimator with robust standard errors. The maximum lag of 
instruments is set as six to avoid using too many instruments.

11.  We do not consider lagged and contemporaneous spatial spillover effects at the same time because these two terms 
tend to be highly correlated.
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Because the model is estimated in the first-difference form, the forecasting is also carried 
out in the same manner. With a sample of data up to period T, we first estimate the model with this 
sample and then make one-step ahead forecasting iteratively to get forecast of 1ln i Tc , +∆ , 2ln i Tc , +∆
,…, ln i T nc , +∆ . Then by adding ln i Tc ,  with the predicted first differences of this variable, we can get 
the forecast in levels, i.e., 1ln i Tc , + , 2ln i Tc , + , …, ln i T nc , + . 

It is straightforward to forecast with the baseline model and the spatial model with one-pe-
riod lagged spatial spillover effects (i.e. aglS  and ag glS − ). For the spatial model with contemporane-
ous spatial spillover effects (i.e. conS  and con gS − ), the forecasting is implemented by the correspond-
ing reduced-form model. Taking conS  as an example, the model is estimated in the first-difference 
form in Equation (6). We rewrite the model for period T+1 in the following form: 

1 1 1 1ln ln ln .T T T T Tc c W c x' tρ ϕ β λ ε⋅, + ⋅, ⋅, + ⋅, + ⋅, +∆ = ∆ + ∆ + ∆ + ∆ + ∆    	      (8)

In this form, , 1ln Tc⋅ +∆  is the N×1 vector representing the dependent 
variables at period T+1 for N provinces. The reduced form is as follows: 	

1
1 1 1ln ( ) ( ln ).T T T Tc I W c x' tϕ ρ β λ ε−

⋅, + ⋅, ⋅, + ⋅, +∆ = − ∆ + ∆ + ∆ + ∆            (9)

Similarly, for the group-specific spillover effects model con gS − , it has the 
following form for period T+1: 

2
1 1 2 2

1 1 1 1 1
1

ln ln ln ln .g g
T T T T T T

g
c c W c W c x' tρ ϕ ϕ β λ ε⋅, + ⋅, ⋅, + ⋅, + ⋅, + ⋅, +

=

∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆∑   (10)

In this form, superscripts 1 and 2 indicate eastern and inland provinces. 
1W is obtained by replacing rows corresponding to inland provinces in W with 
zeros. 2W  is obtained by replacing rows corresponding to eastern provinces in 

W with zeros. 

The reduced form of the group-specific spillover effects model con gS −  is: 

2
1 1 2 2 1

1 1 1
1

ln (1 ) ( ln ).g g
T T T T

g
c W W c x' tϕ ϕ ρ β λ ε−
⋅, + ⋅, ⋅, + ⋅, +

=

∆ = − − ∆ + ∆ + ∆ + ∆∑ 	    (11)

After obtaining the forecast of lnc, which is the logarithm of carbon intensity, the fore-
cast of carbon intensity can be obtained by taking exponents. Then CO2 emission forecasts can be 
obtained by using different scenarios for GDP. While producing point forecasts of emissions are 
straightforward, it is complicated to derive the standard errors for the spatial models. We use the 
Monte Carlo simulation to obtain the standard errors. The coefficients of the above model follow 
an asymptotic joint normal distribution, and the error term ε follows a normal distribution. The 
expectation and covariance matrix of these distributions are produced by the GMM estimation. By 
sampling from these distributions, we can simulate the distribution of the forecasted carbon inten-
sity and CO2 emissions. The standard errors are then computed from the simulated distributions. We 
conduct 10,000 simulations for each model.
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4.3 Model Selection

We would like to compare the forecasting performance of the baseline model and the four 
types of spatial models described above. Because our goal is to choose a model with the superior 
out-of-sample predictive ability, we use out-of-sample prediction criterion instead of in-sample cri-
terion (Auffhammer and Steinhauser, 2012). We conduct the one-, two-, up to six-year-ahead out-of-
sample prediction experiments for each model. All the out-of-sample prediction experiments use the 
samples up to year 2000 to conduct the earliest experiments. This means the forecast range is 2001 
to 2011 for the one-year-ahead prediction, 2002 to 2011 for the two-year-ahead prediction, and 2006 
to 2011 for the six-year-ahead prediction.

The out-of-sample forecast error is based on the aggregate emissions. Model k’s root mean 
squared forecast error (RMSFE) is defined as: 

2 2

1 1

30
2

12 1 2 1

1 1 1 ( ) ,
30

t t

k k t k i i t
t t t t i

RMSFE RMSFE Ê t E
t t t t, , ,

= = =

= = , −
− −∑ ∑ ∑   	   (12)

where , ,
ˆ

k i tE  is model k’s forecast of province i’s CO2 emissions in year t, and ,i tE  is the actual re-
alization. 1t  to 2t  is the year range for which we calculate the out-of-sample prediction. We denote 
the model with the lowest RMSFE as the “best forecasting model.”

5. ESTIMATION RESULTS

We have five types of models including one baseline and four spatial models. Within each 
type of model, we can derive a number of variations by selecting different combinations of explan-
atory variables x and time trend. We denote each variation within a certain type of model as a sub-
model. For example, for each type of model, the explanatory variables x can be any combination 
from the four variables including Inc, Ind, Popden, Car, and the trend variable t can be the linear 
time trend (T), the logarithm time trend (lnT) or none. Therefore, there are 48 (=24×3) sub-models 
for each type of model and 240 (=48×5) sub-models in total. 

We do not present the estimation results for all sub-models here.12 Our strategy is that, 
for each type of model, we select the sub-model with the lowest one-year-ahead RMSFE among 
sub-models within this type of model, or in other words, we are selecting the sub-model representing 
the best forecasting performance for the corresponding type of model. These selected sub-models 
are then used to compare the forecasting accuracy of different types of models. In the remainder of 
the paper, we use the “best forecasting model” to denote the model with the lowest one-year-ahead 
RMSFE. Later we will show that in most cases these best forecasting models also have the lowest 
RMSFE when the forecasting horizon gets longer.

The estimation results are summarized in Table 1. We present the estimation results for the 
selected sub-models representing the best forecasting performance of each type of model. Note that 
we use two different spatial matrices, i.e., rook contiguity weight matrix and inverse distance matrix. 
Therefore, the results of each type of spatial model take up two columns.

For all specifications in Table 1, the Sargan test and auto-correlation test for error terms 
suggest that the GMM estimator is valid. The coefficients of the lagged dependent variable are 
significant in all cases, supporting the dynamic emissions models. The coefficients of spillover ef-
fects, no matter contemporaneous or with one-period lag, are significant and positive, suggesting 

12.  All sub-model results are available in an online appendix.
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the existence of spillovers in emissions across provinces. Moreover, by considering group-specific 
spillover effects between eastern and inland provinces, the spatial dependence across the two region 
groups are different when using the inverse distance matrix, but are close when using the rook con-
tiguity weight matrix. All the selected sub-models contain logarithm time trends with negative and 
significant coefficients. In three out of four cases with the group-specific time trend, the coefficient 
of the time trend for eastern provinces is lower than that for the inland provinces, reflecting the fact 
that eastern provinces have experienced faster declines in carbon intensity than inland provinces. 
Finally, although we considered four additional explanatory variables, only population density Pop-
den is chosen in the selected baseline model.

The bottom six rows of Table 1 report the results of the out-of-sample forecasting exper-
iment. Compared with the baseline model, it is evident that spatial models improve forecasting 
significantly. The best forecasting model, i.e. the model with the lowest one-year-ahead RMSFE, is 
model ag glS −  that uses inverse distance weight matrix as shown in column (4). Its one-year-ahead 
RMSFE is 8.2% lower than that of the baseline model. The improvement becomes more pronounced 
as the forecasting horizon gets longer: the best model’s six-year-ahead RMSFE is 24.6% lower than 
that of the baseline model.

We use energy intensity as a robustness check. As shown in Table 2, the estimation results 
of the energy intensity models are very similar with those of the carbon intensity models. The co-
efficients of the spatial terms are significant in all four types of spatial models. The logarithm time 
trend is included in the selected sub-models from the four types of spatial models, while the selected 
baseline model contains linear time trend. The best forecasting model is aglS  that uses inverse dis-
tance weight matrix as in column (2). The performance of model ag glS −  that uses inverse distance 
weight matrix in column (4) is very close to that of the best model.

To summarize, we have several major findings here. First, accounting for spatial spillover 
effects improves forecasting and the improvement is more significant as the forecasting horizon gets 
longer. Second, it is necessary to consider different specifications of spatial effects, e.g. contempo-
raneous or one-period lag spillover effects, homogeneous or group-specific spillover effects, and 
different spatial weight matrices. If the spillover effects are restricted to be of certain form a priori, 
it may lead to the selection of a sub-optimal forecasting model.

6. PREDICTION RESULTS

6.1 Scenarios

We need socioeconomic scenarios to forecast national and provincial CO2 emissions. How-
ever, future GDP, population, and sectoral compositions are associated with large uncertainties at 
both national and provincial levels. Rather than arbitrarily assuming these variables, we start from 
the national and provincial 12th FYPs to construct the business-as-usual scenario. In China, gov-
ernment plays a tremendous role in socioeconomic development. The targets set in the FYPs are 
substantially relevant for building scenarios.

Based on the goals in the provincial 12th FYPs, we form the scenarios for provincial GDP 
and sectoral compositions. These scenarios are summarized in Table A.2 in Appendix B. We would 
like to highlight the following aspects:

GDP: The national 12th FYP sets the annual GDP growth target at 7%, much lower than the 
actual growth rates in 2011 and 2012 (9.3% and 7.8%). Therefore, we set the national GDP growth 
rate at 7.5% from 2012 to 2015, and at 7% from 2016 to 2020. However, most provinces especially 
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the least developed ones set the goal above 10% in their 12th FYPs, which reflects their strong desire 
to catch up. The double-digit GDP growth rate may be not sustainable. We downward adjust the 
goals of provincial GDP growth rates in the 12th FYPs by the same factor to make them consistent 
with the national growth target. However, with continued slowdown of the Chinese economy, some 
studies project even more pessimistic growth for China. For example, Eichengreen, Park, and Shin 
(2012) predict China’s GDP to grow by only 6.1% to 7.0% per year from 2011 to 2020. To test the 
robustness of our result, we consider two additional economic scenarios, the first of which assumes 
the national GDP growth rate to be 7.0% per year from 2012 to 2015, and 6.1% per year from 2016 
to 2020, and the second of which assumes the national GDP growth rate to be 7.0% per year from 
2012 to 2015, and 5.5% per year from 2016 to 2020.

Sectoral compositions: We need the scenario for the share of the secondary industry in 
GDP since variable Ind is used. We can get the sectoral compositions scenario from the provincial 
12th FYPs. Since the 13th FYP (2016–2020) is not available yet, we further assume the policy goals 
in the 12th FYP will be continued in the 13th FYP. At the national level, the share of the secondary 
industry will decrease by 2.3% for each FYP period.

The FYPs do not have population or migration targets. Following the United Nations 
(2013), we assume that the national population will increase by 0.53% annually from 2011 to 2020. 
At the provincial level, we first estimate the historical population growth rate from 1978 to 2011 for 
each province. We adjust the rate by the same factor for the national growth rate and use it as the 
population growth scenario. For the variable Car, we assume that the growth of the number of cars 
per capita in each province will follow the historical trends.

6.2 National Emissions

We illustrate the national emission forecast in Figure 2 that uses the “best forecasting 
model” ag glS − . This ag glS −  model predicts that China’s CO2 emissions will grow to 14.79 billion 
metric tons in 2020, an increase of 56.2% from 2011 to 2020. The simulated standard deviation of 
the predicted emissions is 1.36 billion metric tons. The ±2 standard deviation interval for the emis-
sion growth rate ranges from 27.6% to 84.9%. The predictions of other models in Table 1 (including 
the aglS  model which is used by Auffhammer and Carson (2008)) are close to that of model ag glS − , 
ranging from 14.65 to 15.05 billion metric tons. The baseline model predicts the national emission 
to be only 1.2% higher than the best forecasting model. However, at the provincial level, the differ-
ence of forecasts between the two models can reach 24%. As shown before, accounting for spatial 
spillover effects improves predictive ability from the baseline model, therefore we will put more 
cofidence on the best forecasting model.

As shown in Figure 2 (b), the best forecasting model predicts that China’s carbon intensity 
in 2015 will be 2.14 t CO2/104 Yuan with the simulated standard deviation being 0.075 t CO2/104 
Yuan. Accordingly, China’s carbon intensity in 2015 will be 8.8% lower than the 2010 level, with 
the ±2 standard deviation interval ranging from 2.4% to 15.2%. This implies that China will not be 
able to reach the 17% reduction target in carbon intensity in the 12th FYP (2011–2015) under the 
BAU scenario. In 2020, the best forecasting model predicts China’s carbon intensity will be 1.95 
t CO2/104 Yuan with the simulated standard deviation being 0.18 t CO2/104 Yuan. In other words, 
China’s carbon intensity in 2020 will be 32.8% lower than the 2005 level, with the ±2 standard 
deviation interval being from 20.4% to 45.1% lower. Therefore, under the BAU scenario there is 
possibility for China to fulfill the 40% to 45% reduction target pledged in the Copenhagen Accord.
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We use energy intensity as a robustness check. The forecasts of energy consumption and 
energy intensity are illustrated in Figure 3. The best forecasting model predicts that China’s energy 
consumption in 2020 will be 6.57 billion tons of coal equivalent (ce) with the simulated standard 
deviation being 0.53 billion metric tons of ce. Correspondingly, it projects emissions will increase 
by 61.7% from 2011 to 2020. The increase is higher than the previous prediction of 56.2% because 
it largely ignores the change in China’s energy mix. The proportion of non-fossil fuel energy (in-
cluding hydro power, nuclear power, wind power, etc.) in national energy consumption has been 
improved from 4.9% in 1985 to 8.0% in 2011. Carbon emissions per unit of energy consumption 
have been declining 0.25% per annum since 1985. Our prediction suggests that the decline will be 
accelerated to 0.38% annually from 2011 to 2020. Therefore, the forecast of energy consumption 
is actually consistent with our forecast of emissions. The predicted energy intensity in 2020 will 
be 30.8% lower than the 2005 level, with the ±2 standard deviation interval being from 19.8% to 
41.9%.

Furthermore, if China’s economic growth slows down, we would like to assess how it will 
affect China’s carbon emissions. Following Eichengreen, Park, and Shin (2012), we assume a GDP 
scenario where the national GDP growth rate is 7.0% from 2012 to 2015, and 6.1% from 2016 to 

Figure 2: Emission forecast up to 2020 using the best forecasting model

Figure 3: Energy consumption forecast up to 2020 using the best forecasting model
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2020. Under this scenario, China’s GDP in 2020 is 5.9% lower than that of the previous scenario. 
Accordingly, the emission forecast by the best forecasting model is 6.1% lower. In an even lower 
economic growth scenario where the national GDP growth rate is 7.0% from 2012 to 2015, and 
5.5% from 2016 to 2020, the GDP and emissions are 8.5% and 8.8% lower than the original sce-
nario. This suggests that China’s emission growth will decelerate almost proportionally with GDP 
growth.

6.3 Provincial Emissions

An advantage of using the disaggregated data is that it allows for the prediction of pro-
vincial BAU emissions, which is of substantial relevance for the sub-national mitigation policy 
making. We would like to examine whether provinces will be able to achieve the allocated carbon 
intensity reduction targets under the BAU scenario. In Table 3, we present the forecasted percentage 
of reduction in carbon intensity using the best forecasting model. We find that during the 12th FYP, 

Table 3:  Forecasted percentage of decline in carbon intensity
　	 Forecasted CO2 intensity reduction	 Allocated goals	 Forecasted CO2 intensity reduction
	 percentage in 2015 relative to 2010	 in 12th FYP	 percentage in 2020 relative to 2005

Costal provinces:			 
Beijing	 –18%(–10%,–25%)	 –18.00%	 –46%(–35%,–57%)	
Tianjin	 –19%(–11%,–26%)	 –19.00%	 –48%(–38%,–59%)	
Hebei	 –5%(3%,–13%)	 –18.00%	 –31%(–15%,–46%)	
Liaoning	 –9%(–3%,–15%)	 –18.00%	 –31%(–18%,–44%)	
Shanghai	 –11%(–5%,–17%)	 –19.00%	 –39%(–27%,–50%)	
Jiangsu	 –6%(2%,–13%)	 –19.00%	 –36%(–22%,–50%)	
Zhejiang	 –10%(–3%,–16%)	 –19.00%	 –35%(–23%,–47%)	
Fujian	 –6%(2%,–13%)	 –17.50%	 –29%(–14%,–43%)	
Shandong	 –13%(–6%,–19%)	 –18.00%	 –40%(–29%,–51%)	
Guangdong	 –12%(–5%,–18%)	 –19.50%	 –35%(–23%,–47%)	
Hainan	 –4%(5%,–13%)	 –11.00%	 –22%(–4%,–39%)	
Inland provinces:			 
Shanxi	 –13%(–6%,–19%)	 –17.00%	 –31%(–17%,–44%)	
Jilin	 –9%(–2%,–16%)	 –17.00%	 –43%(–32%,–54%)	
Heilongjiang	 –10%(–4%,–17%)	 –16.00%	 –37%(–25%,–50%)	
Anhui	 –15%(–8%,–22%)	 –17.00%	 –40%(–28%,–52%)	
Jiangxi	 –7%(–1%,–14%)	 –17.00%	 –29%(–14%,–43%)	
Henan	 –8%(–1%,–15%)	 –17.00%	 –24%(–9%,–40%)	
Hubei	 –5%(3%,–13%)	 –17.00%	 –23%(–6%,–39%)	
Hunan	 –12%(–6%,–19%)	 –17.00%	 –41%(–30%,–53%)	
Inner Mongolia	 –3%(7%,–13%)	 –16.00%	 –25%(–7%,–42%)	
Guangxi	 –3%(6%,–12%)	 –16.00%	 –25%(–8%,–43%)	
Chongqing	 –13%(–7%,–20%)	 –17.00%	 –38%(–25%,–51%)	
Sichuan	 –26%(–15%,–37%)	 –17.50%	 –44%(–28%,–59%)	
Guizhou	 –14%(–8%,–21%)	 –16.00%	 –50%(–40%,–60%)	
Yunnan	 –18%(–10%,–26%)	 –16.50%	 –46%(–34%,–58%)	
Shaanxi	 –17%(–9%,–26%)	 –17.00%	 –26%(–10%,–43%)	
Gansu	 –4%(3%,–12%)	 –16.00%	 –29%(–14%,–44%)	
Qinghai	 9%(29%,–11%)	 –10.00%	 –22%(10%,–54%)	
Ningxia	 1%(13%,–10%)	 –16.00%	 –11%(13%,–34%)	
Xinjiang	 –3%(6%,–12%)	 –11.00%	 –18%(0%,–37%)	

Notes: (1) Taking “–18%(–10%,–25%)” as an example: –18% is the point forecast meaning CO2 intensity will decrease by 
18%, and (–10%,–25%) is the ±2 standard deviation interval. (2) In column two, numbers in bold font represent the allocated 
CO2 intensity reduction target can be achieved under point forecast. In column four, numbers in bold font represent the point 
forecast exceeds the 40% reduction percentage, which is the lower bound of national reduction target in 2020.
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only five provinces can reach the allocated targets as suggested by the point forecasts. By 2020, the 
point forecasts indicate that only nine provinces will be able to reach at least a 40% reduction in 
carbon intensity relative to the 2005 level, which is the lower bound of the national reduction target 
in 2020. However, it should be noted that the ±2 standard deviation interval of most provincial fore-
casts cover the 40% to 45% range, which indicate that within a reasonable range of uncertainty in 
the forecast we cannot rule out the possibility of most provinces reaching the targets.

The rich eastern provinces are projected to achieve higher carbon intensity targets by 2020 
relative to 2005 levels: many provinces can reduce carbon intensity by more than 30% except for 
Hainan and Fujian. However, many less developed central and western provinces can only lower 
carbon intensity to less than 30% below 2005 levels by 2020. One possible reason is that the east-
ern provinces are now accelerating the development of tertiary and high-tech sectors that are less 
energy intensive. In comparison, the central and western provinces are still in the process of rapid 
industrialization, creating pressures on their energy and carbon intensities. In addition, the forecasts 
of some provinces show large uncertainty, e.g. Qinghai and Ningxia, and the reason is that the 
carbon intensity of these regions exhibit clear fluctuations in recent years (as shown by Figure 1). 
Therefore, a continuous carbon mitigation policy is crucial to ensure these provinces to reach the 
carbon intensity target.

7. FURTHER DISCUSSION

7.1 Data Quality

The accuracy of our forecasts relies on national and provincial data quality. However, a 
large discrepancy in the historical CO2 emissions data is found between those using the national sta-
tistics and those aggregating from the provincial statistics (Guan et al., 2012). We compute China’s 
CO2 emissions using these two methods, and compare them with the calculations by other institu-
tions including the Energy Information Administration, the International Energy Agency, and the 
Oak Ridge National Laboratory.13 

Figure 4 shows that the historical energy-related CO2 emissions in China differ dramati-
cally among various sources. These estimates are relatively close before 1995. Since then, the CO2 
emissions aggregated from the provincial statistics have been always higher than those from the 
national statistics. The gap has widened since the year 2005 and reached 1.8 billion metric tons 
in 2011. The estimated emissions from the other three institutions lie between the two series of 
emissions calculated in this paper. The Oak Ridge’s estimates are close to the numbers based on the 
national statistics. The EIA’s and IEA’s estimates are relatively close to the numbers based on the 
provincial statistics in the last three years. 

Guan et al. (2012) have discussed possible reasons of the discrepancy between the national 
and provincial statistics in depth. Zhao, Nielsen, and McElroy (2012) argue that the provincial sta-
tistics are more reliable than the national statistics for three reasons. First, the production of small 
coal mines may not be well recorded by the national statistics. Second, studies using satellite obser-
vations of air pollutants have confirmed that the provincial energy statistics are better proxies for 
activity levels. Third, the national energy statistics may be deliberately under-reported by China’s 
National Bureau of Statistics and National Development and Reform Commission. 

13.  EIA’s statistics are available at: www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm, IEA’s statistics are available at: 
www.iea.org/statistics, and Oak Ridge’s statistics are available at: cdiac.ornl.gov/trends/emis/overview.html.

file:///F:\work\1.project\20130128region_CO2_forecast-zjj\20140105Rblup\8.final\Paper_final0422转投energy\www.eia.gov\cfapps\ipdbproject\IEDIndex3.cfm
http://www.iea.org/statistics
http://cdiac.ornl.gov/trends/emis/overview.html
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Although no clear conclusion exists about the accuracy of national and provincial statistics, 
we use provincial statistics because these statistics are the only available information for calculating 
the provincial-level emissions. Considering the large uncertainties in quantifying China’s CO2 emis-
sions (Gregg, Andres, and Marland, 2008), we should be cautious in interpreting and comparing our 
forecasts with other studies. However, as long as the extent to which provincial energy and GDP 
statistics deviate from national statistics remains unchanged, the annual changing rate of carbon 
intensity calculated from provincial statistics will be the same with that calculated from national 
statistics. Figure 5 shows that generally the carbon intensity calculated from provincial and national 
statistics move together. Therefore, our result can still be used to evaluate whether China’s carbon 
intensity reduction target can be achieved.

7.2 Comparison with Other Forecasts

In comparing forecasts across studies, it is better to compare growth rates in order to avoid 
the difference in the calculated base year emissions. Table 4 compares our result with the forecasts 
by several recent studies. The associated assumptions of GDP growth rate are also reported in the 

Figure 4: Comparison of estimated China’s energy-related CO2 emissions

Figure 5: CO2 intensity calculated form provincial and national statistics
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table. Our study predicts the annual growth rate of emissions from 2011 to 2020 is 5.1%, which is 
the second highest among the recent forecasts.

The most recent International Energy Outlook (IEO) 2013 forecasts China’s CO2 emissions 
to grow by 3.9% annually from 2010 to 2020 and to reach 11.53 billion metric tons in 2020 (EIA, 
2013). To compare forecasts at the absolute level, we use EIA’s calculation of China’s emissions in 
2011 as the base year emissions. By multiplying the base year emissions by the forecasted growth 
rate, we project China’s emissions in 2020 to be 13.63 billion metric tons, which is about 2.10 bil-
lion metric tons higher than that of EIA. This gap is nearly twice of Japan’s current energy-related 
CO2 emissions. In fact, EIA itself has already adjusted its forecast upward to 11.53 billion metric 
tons in IEO 2013 (EIA, 2013) from 10.13 billion metric tons in IEO 2011 (EIA, 2011), suggesting 
the recent emission trend in China has raised EIA’s expectation on China’s future emissions. The 
annual growth rate of China’s CO2 emissions from 2000 to 2010 is 9.3%. However, the newest EIA’s 
forecast suggests that the growth rate of China’s CO2 emissions from 2010 to 2020 will be 58% 
lower than that of the previous decade. In fact, China’s CO2 emissions still grew by 9.0% in 2011 
despite the slowdown in GDP growth. This implies that EIA might have underestimated the driving 
forces for China’s future emission growth.

The predicted growth rate of China’s emissions is even lower in the other three studies, 
including the forecasts by IEA (2012), the Lawrence Berkeley National Laboratory (LBNL) (Zhou 
et al., 2013), and the Energy Research Institute (ERI) in China (ERI, 2009). In fact, the baseline 
scenarios in IEA (2012) and Zhou et al. (2013), are not BAU scenarios in strict sense. IEA (2012)’s 
baseline scenario, which is named as “current policy scenario”, assumes the 17% reduction target 
of carbon intensity during the 12th FYP will be achieved. Similarly, the Continued Improvement 
scenario (CIS) in the LBNL’s study assumes continued progress in energy efficiency and carbon 
abatement, thus cannot represent the BAU scenario (Zheng, Zhou, and Fridley, 2010). Only Dai et 
al.’s (2011) study which uses CGE (computable general equilibrium) model predicted higher growth 
rate than our study. The different results of reduced-form models and structural models can be partly 
explained by the assumptions made in the latter. Because the reduced econometric models rely on 
the information in historical data to forecast, we consider it to be more appropriate for predicting 
BAU emissions in the near term.

China’s CO2 emissions in 2011 are 7.66 billion metric tons based on the national statistics, 
or 9.47 billion metric tons based on the provincial statistics. We treat the two numbers as the lower 
and upper bounds of China’s CO2 emissions in 2011. Our forecasted emission increase from 2011 
to 2020 is 56.2%, which means the absolute increase will be 4.31 to 5.32 billion metric tons. The 
United States has committed to reduce CO2 emissions by 2020 by 17% below the 2005 level, and 

Table 4:  Comparison with other studies
	 Base Year	 Assumption of annual GDP growth rate	 Annual growth rate of CO2 emissions
		  from 2010 to 2020	 (forecast range)	

EIA (2011)	 2008	 7.5%	 3.4% (2008 to 2020)	
EIA (2013)	 2010	 7.5%	 3.9% (2010 to 2020)	
IEA (2012) a	 2010	 7.9%	 2.9% (2010 to 2020)	
Zhou et al. (2013) a	 2005	 7.5%	 2.5% (2010 to 2020)	
ERI (2009) a	 2005	 8.4%	 2.7% (2010 to 2020)	
Dai et al. (2011)a	 2005	 8.4%	 6.1% (2005 to 2020)	
This study	 2011	 7.5% (2011 to 2015)	 5.1% (2011 to 2020)	
		  7.0% (2016 to 2020)	

Notes: a The cited results in the table correspond to the current policy scenario in IEA (2012), CIS scenario in Zhou et al. 
(2013), baseline scenario in ERI (2009), and reference scenario in Dai et al. (2011).
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the European Union has committed to reduce emissions by 2020 by 30% below the 1990 level. This 
suggests that the total emission reductions of the EU and US combined during 2011 and 2020 will be 
about 1.43 billion metric tons14. We forecast that China’s emission increase from 2011 to 2020 will 
be about 3.0 to 3.7 times of the emission reductions from the EU and US combined.

8. CONCLUSION

China’s double-digit economic growth in the last three decades has brought wealth to its 
population, but also made China the largest CO2 emitter in the world. To address the challenge 
of climate change, China has pledged to reduce its carbon intensity by 40–45% below the 2005 
level by 2020 in the Copenhagen Accord. This paper assesses China’s probability of compliance by 
forecasting China’s CO2 emissions up to 2020 under the business-as-usual scenario. We apply dy-
namic spatial econometric models to the detailed energy consumption data. We make the best use of 
China’s energy statistics to compute CO2 emissions at the provincial level. The disaggregated data 
allow us to exploit provincial heterogeneity in emission forecasting. By selecting from a large set of 
spatial models to account for spatial dependence, we find that incorporating spatial spillover effects 
can improve forecasting especially for a long time horizon.

Although China has started to transition towards less energy and carbon intensive growth 
and its GDP growth is slowing down, our best forecasting model suggests that there is still no 
reason to be optimistic that China’s future CO2 emissions will meet its Copenhagen commitment. 
Additional mitigation efforts will be needed to ensure compliance. In absolute terms, our study 
forecasts that China’s CO2 emissions will increase by about 4.31 to 5.32 billion metric tons from 
2011 to 2020. At the provincial level, we find most eastern provinces will be able to achieve greater 
reductions in carbon intensity by 2020 relative to 2005 levels, while the less developed central and 
western provinces will miss their targets. Flexible mitigation mechanisms should be established and 
targeted policies are needed to ensure the less developed provinces’ compliance as they undergo fast 
industrialization.
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A. APPENDIX

A.1 Calculation of Carbon Dioxide Emissions

Carbon dioxide emissions from fossil fuel consumption are calculated following the IPCC 
guidelines (IPCC, 2006): 

2

44 ,
12CO i i i i

i
E A e c o= × × × ×∑      	                  (13)

14.  Calculated using the EIA statistics.
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where i indexes fuel type, 
2COE  denotes CO2 emissions, iA  denotes fuel consumption (kg or m3), 

ie  denotes net heat value (kJ/kg or kJ/m3), ic  is carbon emission factor (kg C/GJ), oi  is carbon ox-
idation rate. Whenever the data are available, we use 17 types of fossil fuels in the energy balance 
sheets (Table A.1). Net heat values ( ie ) are obtained from the China Energy Statistical Yearbooks. 
Carbon emission factors and carbon oxidation rates are obtained from IPCC (2006). Carbon oxida-
tion rates of different fuels are set at the default value of 1.

The energy balance sheets in the China Energy Statistical Yearbooks are available in 1985 
and from 1995 to 2011 for all provinces, except for Ningxia (available from 2000 to 2002), Hainan 
(available in 1985 and 2002), and Chongqing (available in 1985, 1995 and 1996). The energy bal-
ance sheets contain detailed consumption data on 17 types of fossil fuels, heat, and electricity. The 
emissions from burning fossil fuels can be calculated using Equation (13). The emissions from heat 
and thermal power are calculated according to the energy mix for the generation in the correspond-
ing province. The emissions related to inter-regional electricity transmission are ascribed to the 
consumption side, following the “consumer responsibility” method in Meng et al. (2011).

In case the energy balance sheets are missing, we use the energy statistics in the provincial 
statistical yearbooks to impute the missing data points. These provincial yearbooks provide final 
energy consumption data by type including: coal, coke, crude oil, gasoline, kerosene, diesel oil, 
natural gas, heat, electricity, etc. In order to compute CO2 emissions from final energy consumption, 
we need to make assumptions on CO2 emission factors per unit heat and electricity. We assume 
the emission factors per unit heat and electricity during the missing period to be the average of the 
corresponding factor in the year just before and after the missing period. This means, for provinces 
other than Hainan, Sichuan, and Chongqing, the energy balance sheets are available in 1985 and 
1995, therefore we assume the CO2 emission factor per unit heat and electricity from 1986 to 1994 
to be the average of the corresponding factor in 1985 and 1995. Similar treatment is applied to the 
data points of Ningxia from 2000 to 2002 and Hainan in 2002. Because the energy balance sheet 
is not available for Hainan in 1985, we have to assume the CO2 emission factor per unit heat and 
electricity from 1985 to 1994 to be the same as that in 1995. Because Chongqing was separated out 

Table A.1:  Coefficients of various fossil fuels
	 Net heat value ei		 Carbon emission factor ci (kg C/GJ)	

Fuel type	 Unit	 Value			 

Raw coal	 kJ/kg	 20908	 25.8	
Cleaned coal	 kJ/kg	 26344	 25.8	
Other washed coal	 kJ/kg	 15373	 25.8	
Briquettes	 kJ/kg	 17773	 26.6	
Coke	 kJ/kg	 28435	 29.2	
Coke Oven gas	 kJ/m3	 17981	 12.1	
Other coal gas	 kJ/m3	 8418	 12.1	
Other Coking Products	 kJ/kg	 33453	 22.0	
Crude oil	 kJ/kg	 41816	 20.0	
Gasoline	 kJ/kg	 43070	 18.9	
Kerosene	 kJ/kg	 43070	 19.5	
Diesel oil	 kJ/kg	 42652	 20.2	
Fuel oil	 kJ/kg	 41816	 21.1	
LPG	 kJ/kg	 50179	 17.2	
Refinery gas	 kJ/kg	 46055	 15.7	
Other petroleum products	 kJ/kg	 40200	 20.0	
Natural gas	 kJ/m3	 38931	 15.3	
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from Sichuan to become a municipal city only after 1997, the energy balance sheets of Sichuan in 
1985, 1995, and 1996 contain both Sichuan and Chongqing. Therefore we assume the CO2 emission 
factor per unit heat and electricity to be the same for Sichuan and Chongqing in 1985, 1995, and 
1996, and the emission factors from 1986 to 1994 as the average of that in 1985 and 1995. In this 
way we construct a panel data set of provincial emissions from 1985 to 2011 with only ten missing 
observations. The remaining missing data are imputed by cubic spline interpolation.

A.2 Scenario Setting of Provinces

See Table A.2.

Table A.2:  Scenarios setting from 2011 to 2020
	 GDP annual growth rate	 Change of ratio of secondary sector in GDP	

Province	 2012~2015	 2016~2020	 Each FYP	

Whole nation	 7.50%	 7.00%	 –2.30%	

Costal provinces:				  
Beijing	 6.00%	 5.60%	 –2.70%	
Tianjin	 9.00%	 8.50%	 –3.60%	
Hebei	 6.40%	 6.00%	 –1.10%	
Liaoning	 8.30%	 7.80%	 –3.40%	
Shanghai	 6.00%	 5.60%	 –7.60%	
Jiangsu	 7.50%	 7.10%	 –5.40%	
Zhejiang	 6.00%	 5.60%	 –3.60%	
Fujian	 7.50%	 7.10%	 +0.00%	
Shandong	 6.80%	 6.30%	 –6.20%	
Guangdong	 6.00%	 5.60%	 –2.00%	
Hainan	 9.80%	 9.20%	 +2.30%	

Inland provinces:			 
Shanxi	 9.80%	 9.20%	 –1.70%	
Jilin	 9.00%	 8.50%	 –2.00%	
Heilongjiang	 9.00%	 8.50%	 –1.00%	
Anhui	 7.50%	 7.10%	 +0.90%	
Jiangxi	 8.30%	 7.80%	 +1.30%	
Henan	 6.80%	 6.30%	 –1.40%	
Hubei	 7.50%	 7.10%	 –1.60%	
Hunan	 7.50%	 7.10%	 +2.70%	

Inner Mongolia	 9.00%	 8.50%	 –1.80%	
Guangxi	 7.50%	 7.10%	 +1.30%	
Chongqing	 9.40%	 8.80%	 +2.00%	
Sichuan	 9.00%	 8.50%	 +0.30%	
Guizhou	 9.00%	 8.50%	 +5.90%	
Yunnan	 7.50%	 7.10%	 +1.40%	
Shaanxi	 9.00%	 8.50%	 –3.60%	
Gansu	 9.00%	 8.50%	 +1.80%	
Qinghai	 9.00%	 8.50%	 –0.10%	
Ningxia	 9.00%	 8.50%	 +4.00%	
Xinjiang	 7.50%	 7.10%	 +0.20%	

Notes: Figures in column “GDP annual growth rate” are based on goals set in provinces’ 12th FYP, but adjusted by 
the same factor to make them consistent with the national growth we set.
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