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Appendices

A.1 Basis ratio
The weekly average price S∗t paid for electricity differs from the weekly arithmetic
average price St , which is the underlying asset of weekly futures. The extent to
which S∗t and St differ is represented by basis ratio ηt in (5). Figure 1 shows the
observed ratio over the January 1, 2007 and July 23, 2012 period.

Figure 1: Basis ratio

Notes. Observed ratio of the load weighted mean spot price to the arithmetic mean spot price as
defined by (5). Data between January 1, 2007 and July 23, 2012.

As ηt is larger than one in all but one instance, St underestimates S∗t . Such a
departure has not yet been considered in the literature. This departure is due to the
fact that more electricity is consumed during peak hours when its price is higher.

A.2 Delta-hedging with futures
If transaction costs are disregarded, the terminal value of the self-financing hedg-
ing portfolio with an initial value of 0 is given by VT = ∑

T
j=t0+1 θ j(BT /B j)(Fj,T −

Fj−1,T ). Setting θ j = B j/BT , the terminal value of the portfolio becomes

VT =
T

∑
j=t0+1

(Fj,T −Fj−1,T ) = FT,T −FT,t0 = ST −FT,t0 .

Therefore, holding one unit of this portfolio for each unit of load sold (in the case
where the load to serve is known with certainty) permits to lock in the price of
electricity to FT,t0 .
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A.3 Solving problem (8)
The optimal trading strategy (θ ∗T−2,θ

∗
T−1,θ

∗
T ) solving problem (8) with the semi-

quadratic penalty (9) is obtained through the Bellman equation of dynamic pro-
gramming (Bertsekas 1995):

ψt,T = min
θt+1

E [ψt+1,T |Gt ] with the terminal conditionψT,T = G(ΨT −VT ),(25)

θ
∗
t+1 = argmin

θt+1

E [ψt+1,T |Gt ] . (26)

This optimization problem is tackled using backward induction over time. The
traditional approach used for solving (25) is based on a lattice which includes
all state variables of the problem; these include the current value of the load-
basis and futures prices, current futures return volatilities, the current hedging
portfolio value, lagged futures returns and the past portfolio composition. Such an
approach is not viable due to its large dimension. Our approach is a stochastic tree
which is feasible because the hedging portfolio is only rebalanced three times. The
optimization of the trading position θt is performed numerically by discretizing its
possible values.

If daily rebalancing was used instead of weekly rebalancing, the numerical
complexity of the global hedging problem would dramatically increase. The cur-
rent numerical scheme would not be viable. Either considerable simplifications
to the problem would be necessary, see literature review in Section 1, or alter-
native dynamic programming schemes such as spectral interpolation (see Breton
and de Frutos (2010)) or simulation and regression (see Denault et al. (2013))
would be required. Attempting the use of these procedures is beyond the scope
of the current work. Moreover, using a daily resolution would (i) entail modeling
the intra-week dynamics of the state variables which would add another layer of
complexity to the problem, and (ii) lead to more rebalancing and consequently
larger transaction costs. This justifies the weekly granularity with weekly rebal-
ancing. The downside of considering weekly data is that the retailer cannot react
immediately to intra-week information.

A.3.1 Simulation of the stochastic tree
Since the terminal condition ψT,T = G(ΨT −VT ) = G(LT (FT,T −FT−3,T )−VT )
depends on the state variables (the load-basis L and the futures contracts re-
lated variables) and some endogenous variables (the portfolio value VT and conse-
quently the corresponding portfolio positions θT−1, θT−2, and θT−3), the random
tree must account for all these dimensions.

At time T−3, MT−3 scenarios for the state variables are simulated from Equa-
tions (10)-(12) and (15)-(16).1 These scenarios are combined with all the possible
portfolio positions2 θT−2 ∈ ΘT−2 to generate NT−3 = MT−3Card{ΘT−2} simu-
lated values for endogenous variables (VT−2,θT−2).

At time T −2, each of the NT−3 scenarios for the state and endogenous vari-
ables are subdivided into NT−2 = MT−2Card{ΘT−1} branches corresponding to
all combinations of simulated state variables and possible portfolio positions. A
similar iteration occurs at time T − 1, leading to NT−3×NT−2×NT−1 terminal
nodes.

1Simulating a scenario at time t involves simulating the values of the load-basis and futures price
innovations, respectively εt+1 and ωt+1,t+ j, j = 1,2,3.

2A discretized subset ΘT−2 of the possible positions is considered. Card{ΘT−2} represents the
number of elements it contains.
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A.3.2 Backward induction
The algorithm solving (25) starts by computing the final hedging penalty at each
terminal node3 of the tree:

ψ̂T

(
mT−3,mT−2,mT−1
θT−2,θT−1,θT

)
= G

(
LT (mT−3,mT−2,mT−1)(FT,T (mT−3,mT−2,mT−1)−FT−3,T )

−VT

(
mT−3,mT−2,mT−1
θT−2,θT−1,θT

))
.

Equations (25)-(26) are then approximated using the following backward recur-
sion for each node of the tree:

θ̂
∗
T

(
mT−3,mT−2
θT−2,θT−1

)
= argmin

θ∈ΘT

1
MT−1

MT−1

∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

ψ̂T−1

(
mT−3,mT−2
θT−2,θT−1

)
= min

θ∈ΘT

1
MT−1

MT−1

∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

θ̂
∗
T−1

(
mT−3
θT−2

)
= argmin

θ∈ΘT−1

1
MT−2

MT−2

∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

ψ̂T−2

(
mT−3
θT−2

)
= min

θ∈ΘT−1

1
MT−2

MT−2

∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

θ̂
∗
T−2 = argmin

θ∈ΘT−2

1
MT−3

MT−3

∑
m=1

ψ̂T−2 (m
θ ) ,

ψ̂T−3 = min
θ∈ΘT−2

1
MT−3

MT−3

∑
m=1

ψ̂T−2 (m
θ ) .

where4

mT−1 = (εT ,z0,T ) ,
mT−2 = (εT−1,z1,T−1,z0,T−1) ,
mT−3 = (εT−2,z2,T−2,z1,T−2,z0,T−2) .

In the experiments of Section 4, when computing the initial optimal futures po-
sition θ ∗T−2, the number of scenarios are MT−3 = MT−2 = MT−1 = 500 when
the simulation at a given time point involves dependence between the load-basis
and futures innovations, and MT−3 = MT−2 = 1000 and MT−1 = 100 otherwise.
When the load-basis and futures innovations are independent, fewer scenarios are
required at the final step since the conditional expectations can partially be solved
analytically. More precisely, Equations (25)-(26) involve double integrals (one
over the load innovation and the other over the futures return innovation with a
one-week maturity). Fortunately, the load innovation is Gaussian, so the first in-
tegral can be computed analytically. Therefore, instead of using a regular Monte-
Carlo simulation for the futures innovation, a quadrature in a single dimension is
applied.

3The terminal nodes are identified with the set of indices corresponding to the branches constituting
the path: (

mT−3 ,mT−2 ,mT−1
θT−2 ,θT−1 ,θT

)
.

4Although a single futures is used for hedging, returns must also be simulated for all futures that
have a smaller time to maturity; these returns will affect the lagged returns and volatility variables of
the futures that are used for hedging at subsequent time steps.
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The discrete sets of portfolio positions are ΘT−2 = {0.96,0.965, . . . ,1.04}
and ΘT−1 = ΘT = {0.93,0.94 . . . ,1.07}, implying that Card{ΘT−2} = 17 and
Card{ΘT−1}= Card{ΘT}= 15.

At time steps where load-basis and futures innovations are independent, vari-
ance reduction techniques improve the precision of the Monte Carlo estimates and
compensate for small sample sizes. Antithetic variables are used in the simulation
for load-basis innovations ε . The first half of scenarios are simulated by regular
Monte-Carlo methods. In the last half of scenarios, the futures return innovations
are identical to the ones in the first half. Load innovations are however set equal
to their antithetic counterparts.

A.3.3 Re-simulation
The previous algorithm determines the optimal hedging strategy

(
θ ∗T−2,θ

∗
T−1,θ

∗
T
)

as seen from time T − 3. At time T − 2, the retailer holds θ ∗T−2 long futures
positions and has to select θ ∗T−1 to perform the rebalancing. The realization
of the state variables at time T − 2 will not exactly fall on one particular node
of the random tree. The standard approach used to solve this issue is to inter-
polate between the nodes of the tree to determine the optimal hedging position
θ ∗T−1. We opted for a re-simulation to obtain simulated data which incorporates
the newly observed realization of state variables. More precisely, a two-period
random tree is simulated from time T − 2 up to time T to update the optimal
hedging strategy

(
θ ∗T−1|T−2,θ

∗
T |T−2

)
. Since this tree is smaller than the previ-

ous one, we opted for a thinner discretization of the portfolio positions: ΘT−1 =
{0.93,0.9325 . . . ,1.07}, and ΘT = {0.93,0.94 . . . ,1.07}. Furthermore, at time
steps where load-basis and futures innovations are independent, MT−2 = 1000
and MT−1 = 100. Otherwise, MT−2 = MT−1 = 500.
Finally, at time T −1, a one-period random tree with

ΘT = {0.900,0.901 . . . ,1.100}

and MT−1 = 20,000 is simulated to update the final hedging position θ ∗T |T−1.

A.4 Load-basis model estimation

A.4.1 Cross-validation procedure for load model selection
To determine the number P of Fourier terms in step 1 of the load-basis model
estimation (or Q in step 2), a cross-validation procedure is implemented. The
load-basis data are from 2007 to 2012. Data from year y are removed and retained
as out-of-sample, while remaining data are in-sample. For each value of P (or Q),
the model is estimated in-sample. Denote J y

1,P = (γ,β0, ...β2P+1) and J y
2,Q =

(α0, ...α2Q+1). f denotes the pdf function.

Ĵ y
1,P = argmax

J y
1,P

∑
t,year(t)6=y

log fLt |Lt−1(Lt |Lt−1)

(under assumption that v(t) is constant)

Ĵ y
2,Q = argmax

J y
2,Q

∑
t,year(t)6=y

log fvt (J
y
2,Q)εt

(
√

ṽ(t)ε̃t)

where g̃(t) and ṽ(t) are obtained by respectively plugging Ĵ y
1,P in (11) and J y

2,Q
in (12). The ε̃t are calculated by replacing g(t) and v(t) by g̃(t) and ṽ(t) in (10).
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Then, a test statistic assessing the goodness-of-fit (MSE for P, log-likelihood
for Q) is calculated out-of-sample:

MSEP
y =

1
ny

∑
t,year(t)=y

(Lt −Pred(Lt ,Ĵ
y

1,P))2

log-lQy = ∑
t,year(t)=y

log f√
vt (Ĵ

y
2,Q)εt

(
√

v̂(t)ε̂)

where ny is the number of observations in year y. ĝ(t) and v̂(t) are obtained
by respectively plugging Ĵ y

1,P in (11) and Ĵ y
2,Q in (12). The ε̂t are calculated

by replacing g(t) and v(t) by ĝ(t) and v̂(t) in (10). The predicted load-basis is
Pred(Lt ,Ĵ

y
1,P) = ĝ(t) + γ̂(Lt−1− ĝ(t − 1)) where ĝ is calculated by plugging

Ĵ y
1,P in (11) and γ̂ is the first component of Ĵ y

1,P. The prediction is obtained by
applying a conditional expectation on (10). This operation is repeated for all years
y and the test statistic is aggregated across all years:

RMSEP
total =

√
∑

2012
y=2007 nyMSEP

y

∑
2012
2007 ny

or log-lQtotal =
2012

∑
y=2007

log-lQy .

Parameters P̂ and Q̂ are selected to optimize the corresponding test statistic

P̂ = argmin
P

RMSEP
total and Q̂ = argmax

Q
log-lQtotal .

Results are shown in Tables 1 and 2 and suggest P̂ = 3 and Q̂ = 2.

Table 1: Cross-validation test results for the load-basis seasonality trend
Value for P Cross-validation RMSE (×105)

1 2.386
2 2.376
3 2.360
4 2.364
5 2.367

Notes. Out-of-sample cross-validation prediction root-mean-square-error for the load-basis model with
different numbers of Fourier terms P in the load-basis seasonality trend g defined by (11).

Table 2: Cross-validation test results for the load-basis variance trend
Value for Q Cross-validation log-likelihood (×10−3)

1 −3.973
2 −3.967
3 −3.973
4 −3.974
5 −3.976

Notes. Out-of-sample cross-validation log-likelihood for the load-basis model with different numbers
of Fourier terms Q in the load-basis variance trend v defined by (12).

A.4.2 Goodness-of-fit for the load model
In this section, the properties of the standardized residuals ε̂t are analyzed to de-
termine the adequacy of the load-basis model (10)-(12). Figure 2 shows a boxplot
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of residuals by quarter of the year, a QQ-plot and a kernel density plot. Residu-
als look reasonably uniform across quarters; there is thus no obvious evidence that
the seasonal trend is not properly being captured. The Gaussian distribution seems
to be a suitable candidate for residuals, even if the empirical left tail of the load
residuals is slightly heavier. A bootstrap Cramer-Von-Mises goodness-of-fit test
for the adequacy of the Gaussian distribution is applied to the residuals and the
p-value is 27%, not rejecting the Gaussian distribution. A Ljung-Box test for auto-
correlation of residuals has a p-value of 92% and does not reject ε̂t as white noise.
The presence of a GARCH effect in the residuals is tested through the McLeod-Li
test. The p-value is 18% and there is no significant presence of a GARCH effect
and the ε load-basis innovations are modeled by a strong Gaussian white noise.

Figure 2: Load-basis model residuals

Notes. Boxplot, Gaussian QQ-plot and kernel plot for residuals ε̂ of load-basis model (10)-(12). Data
from January 1, 2007 and July 29, 2012.

A.4.3 Goodness-of-fit of futures return model
Ljung-Box and McLeod-Li tests for strong white noise are carried out on the
scaled residuals ẑ j,t , j = 0,1,2. P-values are obtained through simulation (usual
p-value formulas incorrectly assume Gaussianity). P-values are given in Table 3
and none of the tests reject the white noise hypothesis.

Table 3: Autocorrelation tests for futures return innovations
Series z0,t z1,t z2,t

Ljung-Box p-value 0.36 0.35 0.41
McLeod-Li p-value 0.97 0.33 0.72

Notes. Bootstrapped p−values for the Ljung-Box and McLeod-Li tests applied on futures return inno-
vations. Data between January 1, 2007 and July 29, 2012 for futures with 1, 2 and 3 weeks to maturity,
respectively.

The choice of the NIG distribution for the innovations must be validated. Fig-
ure 3 compares the kernel density of the ẑi,t , its fitted NIG distribution and a corre-
sponding Gaussian distribution. The NIG distribution represents more adequately
the shape of the empirical residuals distribution than the Gaussian distribution, the
latter is unable to capture the peakedness of the empirical futures returns distribu-
tion. Cramer-Von-Mises tests (with simulated p-value) are applied to assess the
adequacy of the fit of the NIG distribution for the zi,t innovations. P-values are
found in Table 4 for each univariate zi,t , i = 0,1,2 series. The p-value for the joint
trivariate series is 0.82. The NIG distribution thus provides an acceptable fit.

To validate the choice of the copula, Cramer-Von-Mises goodness-of-fit tests
are applied for the Gaussian copula on the three following pairs of processes:
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Figure 3: Futures return innovations distribution

Notes. Kernel density plots of futures return scaled residuals with estimated parameters from Table 5,
and fitted NIG and Gaussian distributions. Data between January 1, 2007 and July 29, 2012 for
futures with 1, 2 and 3 weeks to maturity.

Table 4: Goodness-of-fit of the futures return distribution
Series z0,t z1,t z2,t
p-value 0.09 0.88 0.65

Notes. Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test on the NIG distribution
for futures return. Data between January 1, 2007 and July 29, 2012 for futures with 1, 2 and 3 weeks
to maturity, respectively.

(z0,t ,z1,t), (z0,t ,z2,t) and (z1,t ,z2,t).5 The p-values for the three tests are given in
Table 5. Since p-values are all high, the Gaussian copula provides an acceptable
fit.

Table 5: Goodness-of-fit of the futures return copula
Innovation Pair (z0,t ,z1,t) (z0,t ,z2,t) (z1,t ,z2,t)

p-value 0.90 0.67 0.97

Notes. Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test applied to the Gaussian
copula linking futures returns. Tests are applied on pairs of returns instead of the triplet (z0,t ,z1,t ,z2,t).
Data between January 1, 2007 and July 29, 2012 for futures with 1, 2 and 3 weeks to maturity.

5The test was not carried on the triplet (z0,t ,z1,t ,z2,t). The numerical burden associated with such
a test is very high.
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