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APPENDIX

INVESTMENT WITHOUT POLICY UNCERTAINTY

The value of the option to invest in the presence (ζ = 1) or absence (ζ = 0) of a subsidy is described in (A–1).
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(A–1)

By expanding the first branch on the right–hand side of (A–1) using Itô’s lemma, we obtain the differential equation for

F
( j )

ζ,0,0 (E), which, together with its solution for E < ε
( j )

ζ,0,0 , is indicated in (A–2).
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Note that the value of the project becomes very small as E → 0. Since β2 < 0, we have E → 0 ⇒ C
( j )

ζ,0,0 Eβ2 → ∞.

Consequently, C
( j )

ζ,0,0 = 0, and, thus, the expression for F
( j )

ζ,0,0 (E) is indicated in (13). By applying value–matching and

smooth–pasting conditions between the two branches of (13), we obtain the expression for the endogenous constant,

A
( j )

ζ,0,0 , and the optimal investment threshold, ε ( j )

ζ,0,0 .
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Finally, by inserting (A–4) into (11) we obtain the expression for the optimal capacity.

k
( j )

ζ,0,0 =

[ a j

bj

1
γ j (β1 − 1) − β1

] 1
γ j −1

, γ j (β1 − 1) − β1 > 0 (A–5)

Moreover, from (A–5) we see that the existence of an optimal solution to the investment problem requires that the cost

function is strictly convex, i.e., γ j (β1 − 1) − β1 > 0⇔ γ j >
β1

β1−1 > 1.

Proposition 1 ε ( j )

1,0,0 < ε
( j )

0,0,0 and k
( j )

1,0,0 = k
( j )

0,0,0 .

Proof: In the presence of a subsidy, the value of the option to invest is indicated in (13). The value–matching and
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smooth–pasting conditions between the two branched of (13) are:
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(A–6)
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(A–7)

The expression for the endogenous constant, A
( j )

1,0,0 , and the optimal investment threshold, ε ( j )

1,0,0 , is indicated in (A–8).
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Notice that ε ( j )

1,0,0 = ε
( j )

0,0,0/(1 + y) and that by inserting the expression for ε ( j )

1,0,0 into (11) we obtain:
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INVESTMENT UNDER A RETRACTABLE SUBSIDY

First, we determine the expected value of the active project in the presence of a retractable subsidy. Notice that, within

an infinitesimal time interval dt, either the subsidy will be retracted with probability λdt and the instantaneous revenue

will decrease by EK
( j )

1,1,0 y, or no policy intervention will take place with probability 1 − λdt and the reduction in the

instantaneous revenue will be zero. Consequently, the expected reduction in the instantaneous revenue over a small time

interval dt is λEK
( j )

1,1,0 ydt and the expected present value of this reduction is
λEK

( j )
1,1,0y

ρ−µ . By subtracting this from the

expected revenues under a permanent subsidy,
EK

( j )
1,1,0 (1+y)

ρ−µ , we obtain the expected value of the revenues under sudden

subsidy retraction, i.e.,
EK

( j )
1,1,0 [1+(1−λ)y]

ρ−µ .

Proposition 2 λ ≥ 0⇒ ε
( j )

1,1,0 ≤ ε
( j )

0,0,0 and k
( j )

1,1,0 ≤ k
( j )

0,0,0 , while, for low values of λ, ε ( j )

1,1,0 ≤ ε
( j )

1,0,0 .

Proof: The value of the option to invest in the presence of a retractable subsidy is indicated in (17). Notice that

λ = 0 ⇒ F
( j )

1,1,0 (E) = F
( j )

1,0,0 (E), and, therefore, ε ( j )

1,1,0 = ε
( j )

1,0,0 < ε
( j )

0,0,0 and k
( j )

1,1,0 = k
( j )

1,0,0 = k
( j )

0,0,0 . From (15), we know

that λ ↗⇒ k
( j )

1,1,0 ↘, which implies that a higher λ lowers the expected value of the project, and, in turn, both the

amount of installed capacity and the optimal investment threshold. Hence, for small values of λ, ε ( j )

1,1,0 ≤ ε
( j )

1,0,0 , whereas

λ → 1⇒ ε
( j )

1,1,0 → ε
( j )

0,0,0 .

Copyright © 2016 by the IAEE. All rights reserved.



3 / The Energy Journal

Proposition 3
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Proof: In the presence of a retractable subsidy, the value of the option to invest is:

F
( j )

1,1,0 (E) = A
( j )

0,0,0 Eβ1 + B
( j )

1,1,0 Eδ1 , E < ε
( j )

1,1,0 (A–10)

If λ = 0, then the subsidy will never be retracted. This implies that F
( j )

1,1,0 (E) = F
( j )

1,0,0 (E), and, in turn, that the relative

loss in option value is zero. By contrast, as λ increases, the likelihood of subsidy retraction increases, and, as a result,

B
( j )

1,1,0 Eδ1 → 0, and, in turn, F
( j )

1,1,0 (E) → A
( j )

0,0,0 Eβ1 , which implies that the relative loss in option value is
A

( j )
1,0,0−A

( j )
0,0,0

A
( j )
1,0,0

.

INVESTMENT UNDER SUDDEN PROVISION OF A PERMANENT SUBSIDY

The extra instantaneous revenue from subsidy provision is EK
( j )

0,0,1 y and will be realised with probability λdt, whereas

with probability 1 − λdt, no subsidy will be provided. Hence, the expected value of the subsidy is λEK
( j )

0,0,1 ydt and

its expected present value is
λEK

( j )
0,0,1y

ρ−µ . Consequently, the expected value of the revenues under sudden provision of

a permanent subsidy consist of the expected revenues without the subsidy,
EK

( j )
0,0,1

ρ−µ , and the extra revenues due to the

subsidy,
λEK

( j )
0,0,1y

ρ−µ , i.e.,
EK

( j )
0,0,1 (1+λy)

ρ−µ .

Proposition 4 λ ≥ 0⇒ ε
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( j )
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( j )
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( j )

1,0,0 , while, for low values of λ, ε ( j )
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( j )

0,0,0 .

Proof: The value of the option to invest under sudden provision of a permanent subsidy is indicated in (21). Notice

that λ = 0 ⇒ F
( j )

0,0,1 (E) = F
( j )

0,0,0 (E), and, therefore, ε ( j )

0,0,1 = ε
( j )

0,0,0 > ε
( j )

1,0,0 and k
( j )

0,0,1 = k
( j )

0,0,0 = k
( j )

1,0,0 . As λ increases,

the likelihood of subsidy provision increases, thereby raising the expected value of the project, and, in turn, the

incentive to install greater capacity. Indeed, λ ↗⇒ k
( j )

0,0,1 ↗, and, therefore, at low values of λ we have ε ( j )

0,0,1 ≥ ε
( j )

0,0,0 .

By contrast, at high values of λ it is very likely that the subsidywill be provided, and, therefore, λ → 1⇒ ε
( j )

0,0,1 → ε
( j )

1,0,0 .
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Proof: Under sudden provision of a permanent subsidy, the value of the option to invest is:

F
( j )

0,0,1 (E) = A
( j )

1,0,0 Eβ1 + B
( j )

0,0,1 Eδ1 , E < ε
( j )

1,0,0 (A–11)

If λ = 0, then the subsidy will never be provided. This implies that F
( j )

0,0,1 (E) =
(
A

( j )

1,0,0 + B
( j )

0,0,1

)
Eβ1 , and, in turn, that the

relative loss in option value is maximised. By contrast, as λ increases, the likelihood of subsidy provision increases,

and, as a result, B
( j )

0,0,1 Eδ1 → 0, and, in turn, F
( j )

0,0,1 (E) → A
( j )

1,0,0 Eβ1 , which implies that the relative loss in option value is

zero.

Copyright © 2016 by the IAEE. All rights reserved.



/ 4

INVESTMENT UNDER INFINITE PROVISIONS AND RETRACTIONS

The dynamics of the value of the option to invest under infinite provision and retractions for ζ = 0, 1, are described in

(A–12) and (A–13), respectively.

F
( j )
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[
λdtEE
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F
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]
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(A–12)

F
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]
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F
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(A–13)

By expanding the right–hand side of (A–12) and (A–13) using Itô’s lemma, we have
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and by adding and subtracting (A–14) and (A–15) we obtain (A–16) and (A–17), respectively, where Fa (E) =

F
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1,∞,∞ (E) + F
( j )

0,∞,∞ (E) and F
b
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b
(E) = 0 (A–17)

The solution to (A–16) and (A–17) can be obtained by setting Fa (E) = A
( j )

a
E
β1 and F

b
(E) = A

( j )

b
E
η . Thus, we obtain:
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a
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η

]
(A–19)

where η is the positive root of the quadratic 1
2σ

2x(x − 1) + µx − (ρ + 2λ) = 0.
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