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APPENDIX

INVESTMENT WITHOUT POLICY UNCERTAINTY

The value of the option to invest in the presence ({ = 1) or absence ({ = 0) of a subsidy is described in (A=T).
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By expanding the first branch on the right-hand side of (A—I)) using Itd’s lemma, we obtain the differential equation for
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Note that the value of the project becomes very small as E — 0. Since 8, < 0, we have £ — 0 = C;’; .
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Consequently, C;'; , = 0, and, thus, the expression for F;g , (E) is indicated in (13). By applying value-matching and

smooth—pasting conditions between the two branches of (13), we obtain the expression for the endogenous constant,
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Finally, by inserting (A—4) into (11) we obtain the expression for the optimal capacity.
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Moreover, from (A-3]) we see that the existence of an optimal solution to the investment problem requires that the cost

function is strictly convex, i.e.,y;(f1 — 1) - 1 >0 vy, > % > 1. [ ]
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Proof: In the presence of a subsidy, the value of the option to invest is indicated in (13). The value-matching and
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smooth—pasting conditions between the two branched of (13) are:
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The expression for the endogenous constant, A and the optimal investment threshold, &’ Lo, 0, is indicated in ||
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Notice that s agj; ,/(1+y) and that by inserting the expression for s , into (11) we obtain:
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INVESTMENT UNDER A RETRACTABLE SUBSIDY

First, we determine the expected value of the active project in the presence of a retractable subsidy. Notice that, within
an infinitesimal time interval dt, either the subsidy will be retracted with probability Adt and the instantaneous revenue
will decrease by EK ](jf ,Y» or no policy intervention will take place with probability 1 — Adt and the reduction in the

instantaneous revenue will be zero. Consequently, the expected reduction in the instantaneous revenue over a small time
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, we obtain the expected value of the revenues under sudden

subsidy retraction, i.e., [ |
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Proof: The value of the option to invest in the presence of a retractable subsidy is indicated in (17). Notice that

1=0= Fl(’])O(E) = 1(10)0(E) and, therefore, 81 o = e” <&’ and k1 Lo =k” =k” . From (15), we know
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that 1 /' = k s, Which implies that a higher 1 lowers the expected value of the project, and, in turn, both the
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Proof: In the presence of a retractable subsidy, the value of the option to invest is:
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If 2 = 0, then the subsidy will never be retracted. This implies that F v (E) = F”

Lo = IO ,(E), and, in turn, that the relative
loss in option value is zero. By contrast, as A increases, the likelihood of subsidy retraction increases, and, as a result,
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Bl L E® — 0, and, in turn, Ff’])()( ) — A(()j()) ,EP', which implies that the relative loss in option value is

INVESTMENT UNDER SUDDEN PROVISION OF A PERMANENT SUBSIDY

The extra instantaneous revenue from subsidy provision is EK | v o1y and will be realised with probability Adt, whereas

with probability 1 — Adt, no subsidy will be provided. Hence, the expected value of the subsidy is AEK lydt and
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Proof: The value of the option to invest under sudden provision of a permanent subsidy is indicated in (21). Notice
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the likelihood of subsidy provision increases, thereby raising the expected value of the project, and, in turn, the
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incentive to install greater capacity. Indeed, 4 = k oot 2 €000
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By contrast, at high values of A itis very likely that the subsidy will be provided, and, therefore, 4 — 1 = e’ S5 m
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Proof: Under sudden provision of a permanent subsidy, the value of the option to invest is:
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relative loss in option value is maximised. By contrast, as A increases, the likelihood of subsidy provision increases,
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INVESTMENT UNDER INFINITE PROVISIONS AND RETRACTIONS

The dynamics of the value of the option to invest under infinite provision and retractions for { = 0, 1, are described in

(A=T2) and (A=T3)), respectively.
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By expanding the right-hand side of (A=12) and (A=13) using Itd’s lemma, we have
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and by adding and subtracting m and (IFI'SD we obtain (A=T16) and (A=T7), respectively, where F_(E) =
F' (E)+F/ (E)andF,(E)=F' (E)-F, (E).
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The solution to (A—16]) and ( | can be obtained by setting F, (E) = (J)EB1 and F, (E) = A(J)E Thus, we obtain:
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where 7 is the positive root of the quadratic %o-zx(x -D+ux—-(p+24)=0. [ |



