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A. Calculation of multiplicative effects in Eq. (9) 

As discussed in Section 2.2, calculation of the effects in Eq. (9) is not straightforward. 

Relevant technique in index number theory is required. When using LMDI-I, the seven 

multiplicative effects in Eq. (9) can be calculated as follows: 
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where ijw  is the weight function that is defined as    0 0, ,T T

ij ij ijw L C C L C C . The item  ,L    is 
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B. Calculation of additive effects in Eq. (13) 

Similar to Eq. (9), the calculation of the effects in Eq. (13) also requires techniques in index 

number theory. When using the additive LMDI-I, the nine additive effects in Eq. (13) can be 

calculated as follows: 
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where  ' 0,T

ij ij ijw L C C . 

According to Ang (2004), there exists a simple relationship between additive effects and 

corresponding multiplicative effects when using LMDI-I to conduct decomposition. For example, 

0ln = ( , )T

PCF PCFC D L C C . It can be found that this relationship holds for all other effects.  

C. Data processing details 

As stated in Section 3.1, our dataset covers five economic sectors. To be consistent with 

China’s statistical data, the transport sector in our study covers the transport, storage and post 

sectors, while the service sector includes the wholesale, retail trade, hotels and catering services. 

CO2 emissions is calculated following the IPCC guidelines, and the conversion factor data is 

collected from the China Statistics Yearbook. The labor data for the agriculture sector is directly 

available in the yearbooks. For the other four sectors, however, this is not the case. We use the 

average employees in the above-designated-size industrial enterprises as a proxy for the industry 

sector’s labor, use the number of staff and workers in construction enterprises as a proxy for the 

construction sector’s labor, use the number of employed persons in transport, postal and 

telecommunication services as a proxy for the transport sector’s labor, and use the number of 

employees in above-designated-size service enterprises as a proxy for the service sector’s labor. 
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D. Brief description of IDA and SDA 

In the literature, IDA and SDA have widely been applied to study changes in energy and 

emissions (Wang et al., 2017a). Taking aggregate CO2 emissions in a country as an example, the 

conventional four-factor IDA model is defined as follows: 
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where I denotes carbon intensity. All other notations are similarly defined as those in Section 2. A 

change in aggregate emissions can then be explained by the four factors, i.e. activity intensity, 

economy structure within region j, the economy’s spatial structure, and the overall activity level. 

Following Eq. (D.1), the change in the aggregate emissions during time period 0 and T can be 

decomposed as 
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where the subscript int denotes the intensity effect.  

SDA is formulated on the basis of the I-O model. The conventional Leontief I-O model is 

given as: 

  
-1

- d dx I A q L q    (D.4) 

where x is the total output vector, q is the final demand vector and Ad is the domestic intermediate 

coefficients.  
-1

-d dL I A  is the Leontief inverse matrix. Combined with energy/environmental 

multipliers, energy and emissions can be further modelled on the basis of Eq. (D.4). As an example, 

aggregate emissions is usually formulated as follows: 

 d dC fL S Q  (D.5) 

where f is the row vector of emission intensity that is defined as emissions per unit of total output, 

dS  is the final demand structure vector and Q is the total final demand. Equation (D.5) can be 

rewritten as: 
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where i and j denote sectors in the I-O table. Equation (D.6) shows that four factors, i.e. emission 

intensity, Leontief structure, final demand structure and total final demand, are responsible for the 

change in aggregate emissions. Similar to Eqs. (D.2)-(D.3), the arithmetic and ratio change in the 

aggregate energy consumption between time period 0 and T can be decomposed as: 
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where the subscript lstr denotes the Leonteif structure effect, dstr the final demand structure effect 

and tfd the total final demand effect. The Leontief structure effect captures the impact of an 

economy’s production technology on energy use, which depicts the detailed relationship between 

the supply and demand of an economy. The final demand structure effect quantifies the impact of 

demand composition variation, and the total final demand effect reflects the impact of final demand 

volume change. 

E. The traditional PDA model by Zhou and Ang (2008) and relevant decomposition results 

Following Zhou and Ang (2008), an economy’s aggregate emission is divided by regions 

(indexed by j and 1,...,j N ). The emission of entity j is formulated as: 
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By incorporating relevant distance functions, Eq. (E.1) is rewritten as: 

 
, ,

, ,

j C j j E j

j C j E j j

j j

C D E D
C D D Y

E Y
   (E.2) 

With the data in year 0 and T, the ratio change in entity j’s emission is modelled as follows: 
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Equation (E.3) is referred to as the Z&A model. These seven effects in Eq. (E.3) can be 

calculated directly without use of any index number techniques. Using the dataset as described in 

Section 3.1, we conduct the decomposition analysis following the Z&A model. It should be noted 

that the five sectors in our dataset are aggregated together to fit Eq. (E.3). The decomposition 

results are summarized in Table E.1. 
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Table E.1 Decomposition results using Z&A model 

Region Dpcf Dpei Dce Dctech Dee Detech Dgdp Total 

Beijing 1.1024 0.8166 0.9255 0.8949 1.0000 0.8600 1.6392 1.0510 

Tianjin 1.3318 0.8584 0.8752 0.8928 0.9099 0.8584 2.1575 1.5052 

Hebei 0.7332 0.6165 1.0958 1.2930 1.1412 1.1951 1.7102 1.4939 

Shanxi 0.6943 0.5773 0.8464 1.5584 1.0000 1.4404 1.6752 1.2755 

Inner Mongolia 0.7780 0.5986 0.9338 1.3317 1.0443 1.2308 2.2705 1.6901 

Liaoning 1.1480 1.0000 1.1370 0.7971 1.1823 0.7368 1.9622 1.7784 

Jilin 1.3959 1.0000 0.9198 0.7971 0.9723 0.7368 2.0031 1.4687 

Heilongjiang 1.5679 1.0729 0.6411 0.9819 0.7669 0.9175 1.7564 1.3088 

Shanghai 1.0854 0.9050 1.0000 0.8928 1.0000 0.8584 1.6531 1.2445 

Jiangsu 1.2243 0.9446 0.9191 0.9121 1.0012 0.8998 1.8601 1.6246 

Zhejiang 1.2360 0.9688 0.7679 1.0027 0.8554 0.9364 1.7112 1.2638 

Anhui 1.2798 1.0000 0.9111 0.8469 0.9358 0.8350 1.9281 1.4879 

Fujian 1.4430 1.0458 0.6816 0.9892 0.8272 0.9412 1.9289 1.5282 

Jiangxi 1.2095 1.0580 0.8339 0.9228 0.9638 0.8834 1.8861 1.5812 

Shandong 1.2561 0.9833 0.9680 0.8142 1.0578 0.7493 1.8460 1.4245 

Henan 1.3033 1.0580 0.8525 0.9228 0.8944 0.8834 1.8433 1.5799 

Hubei 1.2708 1.0262 1.1142 0.7414 1.1484 0.7180 1.9217 1.7069 

Hunan 0.9952 0.6395 0.6332 1.5267 0.7080 1.4615 1.9045 1.2124 

Guangdong 1.1022 0.9138 1.0000 0.9203 1.0000 0.9138 1.8062 1.5298 

Guangxi 1.1539 1.0000 0.9828 0.8469 1.0379 0.8350 1.9453 1.6192 

Hainan 1.0943 1.0580 1.0091 0.9228 1.0653 0.8834 1.8012 1.8273 

Chongqing 1.6444 1.2550 0.7302 0.8217 0.8739 0.7843 2.0292 1.7221 

Sichuan 1.1193 1.0580 1.0705 0.9228 1.0415 0.8834 1.9223 2.0689 

Guizhou 1.0000 0.6850 0.9873 1.0144 1.0000 1.0000 1.7131 1.1752 

Yunnan 0.6864 0.5440 0.9647 1.4778 1.0000 1.4569 1.7633 1.3677 

Shaanxi 1.7522 1.2550 0.6866 0.8217 0.8201 0.7843 1.9614 1.5653 

Gansu 0.6811 0.5310 0.9816 1.5793 1.0000 1.5119 1.7018 1.4426 

Qinghai 0.7517 0.7704 1.0227 1.3385 1.1735 1.2777 1.8550 2.2050 

Ningxia 0.8818 0.6869 1.0000 1.0970 1.1185 1.0614 1.8723 1.4768 

Xinjiang 0.9563 1.0000 1.2769 0.7971 1.4193 0.7368 1.6320 1.6611 

National geometric mean 1.0939 0.8728 0.9129 0.9962 0.9892 0.9506 1.8497 1.5104 

 


