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Online Appendix A: Spot Prices - One factor Model  

We summarize Lucia and Schwartz (2002). Spot electricity prices Pt are characterized as  

 

𝑃𝑡 = 𝑠(𝑡) + 𝑋𝑡      (A.1) 

 

where 𝑠(𝑡) is a deterministic function
1
, and 𝑋𝑡 , is a mean-reverting stochastic process with constant 

volatility  and, under the natural probability measure P follow: 

 

𝑑𝑋𝑡 = −𝑘𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑍𝑡
𝑃    (A.2) 

 

          It can be shown that under the risk-neutral probability measure Q, process Xt follows: 

 

𝑑𝑋𝑡 = 𝑘(𝛼∗ − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑍𝑡
𝑄

    (A.3) 

 

where 𝑑𝑍𝑡
𝑄

 are increments of standard independent Brownian motions 𝑍𝑡
∗ the mean reversion parameters 

are 𝑘 and X(0)=𝑥0, and the drift term is 

 

𝛼∗ ≡
−𝜆𝜎

𝑘
                           (A.4) 

 

We assume the Market Prices of Risk (MPR) of the electricity, which are 𝜆 respectively, to be 

constant over time. Under the risk-neutral measure the spot price 𝑃𝑡  follows 

 

𝑃𝑡 = 𝑠(𝑡) + 𝑋0𝑒−𝑘𝑡 + 𝛼∗(1 − 𝑒−𝑘𝑡)+𝜎 ∫ 𝑒𝑘(𝑠−𝑡)𝑑𝑍
𝑡

0

𝑄
  (A.5) 

 

The distribution of Pt is Normal with mean given by : 

  

𝐸0
𝑄(𝑃𝑡 ) = 𝑠(𝑡) + 𝑋0𝑒−𝑘𝑡 + 𝛼𝑄(1 − 𝑒−𝑘𝑡)   (A.6) 

 

The value of any derivative security must be the expected value, under the risk-neutral measure, 

of its payoffs discounted to the valuation date at the risk-free rate. Assuming a constant risk-free rate r, 

the value at time zero of a forward contract on the spot price maturing at time T must be  

 

𝑉0
𝑇(𝑃𝑇 ) = 𝑒−𝑟𝑇𝐸0

∗[𝑃𝑇 −  𝐹0(𝑃0, 𝑇)]    (A.7) 

 

where F0(P0,T) is the forward price set at time zero and T is the time to maturity. Since the value of a 

forward contract must be zero when it is first entered into, we obtain a closed form expression for 

computing forward prices with maturity T as follows 

                                                             
1
 Variables f(t) and fF(t) include constant terms, deterministic seasonal components as well as other deterministic factors such as 

calendar effects. 
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𝐹0(𝑃0,𝑇) = 𝐸0
∗(𝑃𝑇 ) = 𝑠(𝑇) + (𝑃0 − 𝑓(0))𝑒−𝑘𝑇 + 𝛼∗(1 − 𝑒−𝑘𝑇)  (A.8) 

  

The variance of the forward prices are given by 

 

𝑉𝑎𝑟0
𝑇(𝑃𝑇 ) =

𝜎2

2𝑘
(1 − 𝑒−2𝑘𝑇)      (A.9) 

 

These results are for forward contracts providing electricity in a single point in time (T). Given 

that the swap contract provides delivery of electricity during a period (e.g. during 31 days in January), we 

use (A.8) to generate prices during the full delivery period (e.g. we generate thirty-one forward prices in 

the cases of monthly contracts maturing in January and so on), and take the average. This average is the 

estimated swap price provided by this model. 

 

 

Table A1: Estimation of One Factor Model 

This table reports the results of regressions (16) and (17). The dependent variable is the average daily 

EEX spot price (EEX - Phelix Base Hr.01-24 E/Mwh). Our database spans from February 2, 2009 to 

December 31 2012. Explanatory variables include day of the week dummies as well as the NEG variable 

that is a dummy variable taking into account negative electricity prices. It is equal to 1 if the price is 

negative (4 Oct 2009, 26 Dec 2009, 25 Dec 2012 y 26 Dec 2012) and it is zero otherwise. We estimate the 

coefficients by means of a regression robust to heteroscedasticity, and serial autocorrelation. The results 

presented correspond to the estimated coefficient, standard errors and t-statistics. The symbol * and ** 

denotes that the variable is significant at 5% and 1%, respectively. 

 

 
 

 
 

 

 

 

 

 

 Coeff. s.e. t-stat 

NEG -79.86** 12.91 -6.18 

@WEEKDAY=1 46.25** 0.77 60.09 

@WEEKDAY=2 48.06** 0.64 75.30 

@WEEKDAY=3 48.14** 0.67 71.49 

@WEEKDAY=4 47.48** 0.66 71.76 

@WEEKDAY=5 46.22** 0.71 65.28 

@WEEKDAY=6 39.84** 0.60 65.99 

@WEEKDAY=7 33.60** 0.68 49.21 

𝟏 − 𝒌̂ 0.77** 0.03 29.70 

𝒌̂ 0.23** 0.025 8.79 

𝝈̂ 5.86   

𝑹𝟐  58.7   
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Figure A1: Parameter Stability 

The figure shows the recursive estimation of the parameters (mean reversion k and volatility ) for the 

Spot Series 7 days EEX - Phelix Base Hr.01-24 E/Mwh.  We use a 365-day rolling window. There are 

1066 estimates. The last window is: 2/01/12-31/12/12. Average values are k = 0.23 and  = 5.86. 
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Figure A2: Swap Prices, Fitted Values and Errors in the Spot Model 

Using the parameters estimated in Table  B1 we compute forward prices we obtain a closed form 

expression for computing forward prices with maturity T using Equation (A.8) as follows 𝐹0(𝑃0,𝑇) =

𝑠(𝑇)̂ + (𝑃0 − 𝑓(0))𝑒−𝑘̂𝑇 + 𝛼∗(1 − 𝑒−𝑘̂𝑇).  We then generate swap theoretical prices (average of forward 

prices during the delivery period) using the previous equation for all contracts (denoted M1_fitted, 

Q1_fitted and Y1_fitted).  As an illustration we present the results for M+1, Q+1 and Y+1 denoted M1, 

Q1 and Y1 (which are the most liquid contracts within each market segment) and compare them against 

market prices during 2010. Results for the other contracts and periods are available on request.  

 

 

Error M1 M1 Fitted and M1 

  

Error Q1 Q1 Fitted and Q1 

  

Error  Y1 Y1 Fitted and Y1 
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Online Appendix B: HJM Model 

 

We tested several alternative specifications for the HJM model; all of them are available on request.  We 

present the best performing specification, based on using three liquid contracts within each segment. 

Under this specification, the model gives best results in terms of fitting the volatility term structure. 
2
. 

This model is a HJM-based multi-factor stochastic process for electricity swap prices under the real-world 

probability measure, 

 

𝑑𝐹𝑖(𝑡,𝑻 )

𝐹𝑖(𝑡,𝑻 )
= ∑ 𝛼𝑘𝑖(𝑡, 𝑻) + 𝜎𝑘𝑖(𝑡, 𝑻 )𝑑𝑊𝑡

𝑘𝑖𝑁
𝑘=1 ,    (B.1)  

 

Given that we work with liquid contracts within each market segment, we propose specific 

parameterizations for the volatility functions in (B.1) as follows 

 

𝑑𝐹𝑖 (𝑡, 𝑻 )

𝐹𝑖(𝑡, 𝑻 )
= 𝛼𝑖 +  𝜎1𝑖(𝑡, 𝑻𝒊)𝑑𝑊𝑡

1𝑖  (B.2) 

𝜎1𝑖(𝑡, 𝑻𝒊) = 𝑒−𝑘𝑖(𝑻𝒊−𝑡)𝜎1𝑖  (B.3) 

 

where 𝑑𝑊𝑡
1𝑖 , are independent Brownian motions for all delivery periods, and 𝜎1𝑖(𝑡, 𝑻𝒊) are volatility 

functions. We choose parameterization (B.2)-(B.3) because one factor explains over 80% of total 

variation and we look for simple and robust parametrizations. So, we apply a parsimonious 

representation, that is, one factor. Regarding specific functions to be used, Equation (B.2-B.3) was chosen 

because of its analytical tractability and at the same time its ability in reflecting the well-known fact that 

short dated forward returns are more volatile than long dated forwards. To calibrate this model we 

proceed as follows. We compute returns for contracts available in each case. We use yearly contracts (Y1 

to Y3), quarterly contracts (Q1 to Q3) and monthly contracts (M1 to M3). Volatility functions are 

recovered by eigenvector decomposition of the covariance matrix. This decomposition yields a set of 

independent factors driving the evolution of the variables underlying covariance matrix Σ. We decompose 

Σ into n (n=3) eigenvectors vi (size 3x1) and associated eigenvalues λi such that Σ = RVR’ where  

columns of R are eigenvectors and the principal diagonal in V contains eigenvalues (other elements in V 

are zero).  We only consider one eigenvalue. The first volatility function is computed by fitting Equation 

(B.1) to data 𝒗𝟏√𝜆1 .  

 

Statistics of returns series are in Table B1. Average returns are not statistically different from 

zero, and so we set i = 0, ∀𝑖. Estimated standard deviation is annualized by the number of trading days 

(250) and varies from 13% (Y3) to 32% (M1). Volatility is usually higher for the closest to maturity 

contracts (Samuelson effect), confirming the well-known fact that short dated forward returns tend to be 

more volatile than long dated forwards. Figure B1 shows (sample from 2004 to 2012) the term structure 

of the volatility of market segments.  The distribution of returns presents skewness and kurtosis, deviating 

                                                             
2
 Additional results for other models are available on request. 
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significantly from the normal distribution. 

 

Eigenvalues resulting from the eigenvector decomposition tell us the importance of each 

eigenvector and hence the number of factors that we should include in our model. The first eigenvector is 

the most important, explaining 87%, 89% and 94% of the total variation in the evolution of the swap 

curve for the monthly, quarterly and yearly contracts respectively, supporting the reasonableness of 

assumptions (B.2 –B.3). 

 

Figure B2 shows the first principal component function recovered for each contract type. This 

first principal component acts to shift forward prices and tilts curves. The most important factor 

(COMP1) is positive for all maturities, but decreasing with maturity. This implies that a positive shock to 

the system causes all prices to shift up but by decreasing amounts, depending on the maturity. The longer 

the maturity, the smaller the increase in prices is.  Table B2 presents the parameter estimates from the 

volatility function obtained in the Principal Component Analysis using equations for the entire sample 

2004-2012. 

 

Table B2 presents in Panel B the LS estimates of parameters from volatility functions obtained in 

PCA using equation 𝜎1𝑖(𝑡, 𝑻𝒊) = 𝑒−𝑘𝑖(𝑻𝒊−𝑡)𝜎1𝑖  for the full sample period 2004-2012. Panel A reports the 

in-sample root mean squared pricing errors (RMSEs). We compute daily errors based on fitted swap 

prices based on estimated parameters in Panel B. We compute the volatility function implied by the HJM 

model and by the SFP model and compare results against market prices. In the case of the HJM model, 

root-mean squared errors (RMSEs) are 6.05%, 19.32%,and 11.96% for monthly, quarterly and yearly 

contracts respectively. By contrast, RMSEs for those contracts are 0.10%, 0.12% and 0.30% respectively 

in the case of SFP model. The degree of fit of SFP  is substantially higher than HJM’s. In the case of the 

first volatility function, parameter 𝜎1𝑖  represents the overall volatility of the forward curve whilst 

parameter ki tells us how fast the forward volatility curve decreases with increasing maturity. Parameter 

𝜎1𝑖  captures the annualized volatility averaged over all contracts of a given class. From Table B1 it is easy 

to see that average volatility for annual, quarterly and monthly returns is 17%, 19% and 32% respectively. 

These are very close to estimated parameters 𝜎1𝑖  in Table B1, which are 19%, 19% and 38% respectively. 

The reason of the proximity lies in the low values of the decay factor. Estimated values of this parameter 

k  (0.15, 0.03 and 0.20) suggest a fairly slow decrease in volatility as time to maturity increases. Monthly 

prices present higher overall volatility and faster decrease in volatility with maturity, followed by 

quarterly and yearly prices. However, monthly prices present slower volatility attenuation than yearly 

prices. The degree of fit of the equation is high in the case of yearly prices (99%), followed by monthly 

(99%) and quarterly prices (83%). To check parameter stability we repeat the calibration exercise using 

different subsamples 2006-2010 and 2010-2012. A comparison of parameters is in Figure B3, which 

suggests stability of estimates of parameter. Overall, results suggest that parameters are reasonably stable 

over time. 

 

Although the model seems to fit the volatility term structure to some extent, cannot recover the 
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skewness and kurtosis observed in the empirical distributions. By contrast, the SFP model not only fits 

better the market’s volatility term structure, but also is able to take into account skewness and kurtosis.  

 

 

 

Table B1: Descriptive Statistics of Returns 

The table shows descriptive statistics of returns (1-day changes in the natural logs of swap prices) and the 

sample covariance matrix of these returns. We study three contracts for each market segment (yearly, 

quarterly and monthly), contracts M1 to M3, Q1 to Q3 and Y1 to Y3 from 6/1/2004 to 12/31/2012.  The 

"Std. Dev." column reports the standard deviation of the series in annual terms.  The nine series are 

corrected of the rolling effect by means of intervention analysis. p-val is the p-value for the test of zero 

mean.  

 

 M1 M2 M3 Q1 Q2 Q3 Y1 Y2 Y3 

 Mean -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Median -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Maximum 0.163 0.149 0.126 0.109 0.099 0.099 0.088 0.070 0.073 

 Minimum -0.146 -0.163 -0.239 -0.062 -0.161 -0.074 -0.071 -0.063 -0.064 

 Std. Dev. 0.329 0.269 0.239 0.193 0.191 0.182 0.174 0.150 0.131 

 Skewness 0.175 -0.160 -1.837 0.326 -0.905 0.136 0.008 0.163 0.516 

 Kurtosis 9.999 14.152 37.444 9.801 24.640 10.586 9.424 10.023 14.248 

 p-val 0.080 0.133 0.195 0.511 0.985 0.984 0.962 0.595 0.998 

 

 

 

Table B2: Parameters Estimation and RMSE 

The table presents in Panel A the LS estimates of the parameters from the volatility functions 

obtained in PCA using equation 𝜎1𝑖 (𝑡, 𝑻𝒊) = 𝑒−𝑘𝑖(𝑻𝒊−𝑡)𝜎1𝑖  for the full sample period 2004-2012. 

t- statistics are presented in parenthesis. Panel A reports in-sample root mean squared pricing 

errors for HJM and SFP models. In the case of HJM, the errors are computed daily based on the 

fitted prices of swap based on estimated parameters in Panel B.  

 

 

 

 

Yearly 

 Contracts 

Quarterly 

Contracts 

Monthly 

Contracts 

Panel B: RMSEs 

HJM 6.05% 19.32% 11.96% 

SFP 0.10% 0.12% 0.30% 

Panel A: Volatility Function 

σ1 0.012 0.012 0.024 

 ( 37.34) ( 34.75) (67.90) 

K -0.154 -0.030 -0.201 

 (11.32) (2.23) (26.09) 

R
2
 0.992 0.834 0.998 
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Figure B1: Volatility Functions 

The Figure shows the first principal component functions recovered from the above procedure for each 

contract type (M1, M2, M3; Q1, Q2, Q3 and Y1,Y2, Y3). Sample period 2004-2012 
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Figure B2: Stability of the parameters by subsamples 

To check parameter stability we have repeated the calibration exercise using different subsamples 2006-

2010 and 2010-2012. The plot presents a comparison of the parameters.  

 

 

 
 

 

 S04012 S06010 S1012 

SIGMA_M 0.0242 0.0257 0.0169 

K_M -0.203 -0.181 -0.182 

    

SIGMA_Q 0.012 0.0134 0.0094 

K_Q -0.031 -0.021 -0.034 

    

SIGMA_Y 0.0126 0.0146 0.0093 

K_Y -0.157 -0.158 -0.112 
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Online Appendix C: Cartea and Figueroa (2005) Model  

 

CF denote the electricity spot price at time 0≤t≤T by P(t), and assume that it takes the form P(t) = e
s(t)

X(t) 

where s(t) is a deterministic function modelling trend an seasonal effects, and X(t) is a stochastic process 

modelling the random fluctuations around this trend. We choose the following trend model (Benth et al., 

2012) 

 

𝑠(𝑡) = 𝛼1 + 𝛼2

𝑡

250
+ 𝛼3 cos (𝛼4 + 2𝜋

𝑡

250
) + 𝛼5 cos (𝛼6 + 4𝜋

𝑡

250
)   (𝐶. 1) 

 

DF specify the X(t) process for the jump-diffusion model as follows  

 

𝑑𝑙𝑛𝑋(𝑡) =  −𝛼𝑙𝑛𝑋(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) + 𝑙𝑛𝐽𝑑𝑄(𝑡)   (𝐶. 2) 

 

where α > 0 is the speed of mean-reversion, W is a Brownian motion, σ(t) > 0 is a time-dependent 

volatility, J is a proportional random jump size and dQ(t) is a Poisson process of daily intensity (arrival 

rate) l with 

 

𝑑𝑄(𝑡) =  {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   𝑙𝑑𝑡

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑙)𝑑𝑡
}    (𝐶. 3) 

 

We follow standard practice and assume that the jump size distribution is lnJ∼N (μJ ;σJ) and  E[J] = 1. We 

estimate parameters using the method in Cartea and Figueroa (2005) with t)estimated by rolling 

historical volatility. Estimated parameters are shown in Table C.1 

 

Table C1: CF Estimated parameters 

This table contains estimates of CF model. Sample period is from 6/1/2004 to 12/31/2012.Sample size is  

2179 observations. * denotes significance at 5% level and ** at 1% level 

 

Parameter Estimate 

 0.1347** 

Average (t)        0.1618**     

j -0.1971 

j  0.6952** 

l 0.0188**  

Notice that the estimate of daily intensity l implies an average number of seven jumps per year, which is 

consistent with the empirical evidence. Next, we compute forward prices using Equation 20 in Cartea and 

Figueroa (2005) 
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𝐹(𝑡, 𝑇) = 𝐺(𝑇)(
𝑆(𝑡)

𝐺(𝑡)
)𝑒−𝛼(𝑇−𝑡)

exp [∫ [
1

2
𝜎2(𝑠)𝑒−2𝛼(𝑇−𝑠) − 𝜆𝜎(𝑠)𝑒−𝛼(𝑇−𝑠)] 𝑑𝑠 + ∫ 𝜉(𝛼, 𝜎𝐽

2)𝑙𝑑𝑠 −
𝑇

𝑡

𝑇

𝑡

𝑙(𝑇 − 𝑡)    (𝐶. 4)       

 
 

𝜉(𝛼, 𝜎𝐽
2) = exp [−

𝜎𝐽
2

2
𝑒−𝛼(𝑇−𝑠) +

𝜎𝐽
2

2
𝑒−2𝛼(𝑇−𝑠)] 

 

 

Notice that in C.4 an additional parameter , Market Price of Risk (MPR) is included. By using 

theoretical forward prices and comparing with average market prices, we extract the implied lambda 

(MPR). In Table C2 we show values of lambda by contract. 

 

Table C2: CF Market Price of Risk 

This table contains estimates of the Market Price of Risk for CF model using Equation C.4. Sample 

period is from 6/1/2004 to 12/31/2012.Sample size is 2179 observations.  

 

 Average  (MPR) 

SPOT 50.82   

M1 48.74 0.21 

M2 49.92 0.17 

M3 50.61 0.16 

M4 50.99 0.14 

M5 51.45 0.13 

M6 51.51 0.11 

Q1 50.44 0.14 

Q2 51.47 0.11 

Q3 51.46 0.05 

Q4 51.74 0.01 

Q5 52.47 -0.05 

Q6 52.76 -0.11 

Y1 52.01 0.02 

Y2 52.61 -0.17 

Y3 53.52 -0.41 

Y4 55.23 -0.69 

Y5 56.69 -1.02 

Y6 57.54 -1.39 

Average 52 -0.15 

 

 

Notice that sign and magnitude of MPR varies across forward maturities depending on hedging pressure 

from producers and consumers (Benth, Cartea and Kiesel 2008). Situations where MPR < 0 hold with 

markets where the consumers’ desire to cover their positions ‘outweighs that of the producers. Consumers 

are averse to higher electricity prices and willing to pay a risk premium to avoid such higher prices. We 

see this situation with contracts Y2-Y6. Conversely, situations where MPR>0 result when the producers’ 

desire of hedge their positions outweighs that of the consumers. We see this situation with contracts M1 to 

Q3. Positive (Negative) MPR is usual in positive (negative) beta equity markets and implies that forward 

prices are (upward) downward-biased estimators of future spot prices.  
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Online Appendix D: Di Poto and Fanone (2012) Model  

 

To give a comparison against a recent market model competitor, we develop an adapted version of the 

model by Di Poto and Fanone (2012), DF henceforth. We adjust DF in several aspects. First, we do not 

apply any smoothing algorithm to data. This choice make results comparable to the model proposed in 

this paper. Second, we use the loading factor as a direct volatility proxy instead of fixing a polynomial 

parametrization as in DF. Although this deviation does not make a significant difference, eliminates the 

possible fitting error, so improving DF model performance.  Finally, we make use of the first four 

independent components instead of the first three components of DF. This adjustment should have a 

positive effect on DF’s performance. 

 

D.1. The model  

 

Assume T<∞ and let (Ω, F, P) be a complete filtered probability space, with an increasing and right-

continuous filtration {𝐹𝑡}𝑡∈[0,𝑇] where, as usually, 𝐹𝑜 contains all sets of probability zero in F. The model 

assumes a simple lognormal market representation given by the following stochastic differential equation: 

𝑑 ln 𝐹𝑐 (𝑡) = 𝛿𝑐(𝑡)𝑑𝑡 +  ∑ Σc,k(t)dLk(t)

𝑛

𝑘=1

 (𝐷. 1) 

Where, 𝐹𝑐 (𝑡) = 𝐹𝑐 (𝑡, 𝜏𝑠
𝑐 , 𝜏𝑒

𝑐) is the price at time t for an electricity future with delivery period [𝜏𝑠
𝑐 , 𝜏𝑒

𝑐]. We 

assume 𝛿𝑐 and Σc,k to be sufficiently regular functions such that the swap dynamic ln 𝐹𝑐  is square 

integrable, and dLk, 𝑘 = 1, … , 𝑛 are independent Lévy processes.  

In addition, the following functional form is assumed to model the mean reverting process, 𝛿𝑐(𝑡): 

𝛿𝑐(𝑡) =
𝑑𝑠𝑐(𝑡)

𝑑𝑡
+  𝛼𝑐(𝑠𝑐(𝑡) − ln 𝐹𝑐 (𝑡))  (𝐷. 2) 

Last expression allows us to model a typical market behavior, that is, mean reversion in the direction of 

seasonality. Finally, a Normal Inverse Gaussian (NIG) distribution is assumed for the independent 

increments, dLk(t).  

 

D.2 Model estimation 

 

We model seasonality by using the following parametric periodical function: 

𝑠𝑐(𝑡) =  𝛽0 + 𝛽1𝑡 + 𝛽2 cos (
2𝜋(𝑡 − 𝛽3)

250
)  (𝐷. 3) 

We estimate parameters in (D.3) with a least square approach for each futures contract. After the seasonal 

estimation we remove it by subtracting, 𝑠𝑐(𝑡), to the log-price.  Once seasonality is removed, in line with 

DF, we deal with the autoregressive component of order one, AR(1).  As in DF, we do not find evidence 

of a long memory effect. Estimated mean-reversion parameters, 𝛼𝑐̂ are close to zero and non-significant 

and we report results in Table D1.   
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Table D1: Estimated mean reversion parameters 

Estimated parameters of the AR(1) process for future contracts with different maturities. Sample period is 

from 6/1/2004 to 12/31/2012.Sample size is 2179 observations. * denotes significance at 5% level and ** 

at 1% level. 

 

Parameter Yearly  Quarterly  Monthly 

𝛼1 0,0059 0,0062 0,0093 

𝛼2 0,0039 0,0071 0,0042 

𝛼3 0,0022 0,0096 0,0031 

𝛼4 0,0026 0,0064 0,0038 

𝛼5 0,0038 0,0088 0,0049 

𝛼6 0,0096 0,0081 0,0120 

     

Last, we apply the Independent Component Analysis (ICA) algorithm to residuals  

𝒙 = 𝑑 ln 𝐹𝑐 (𝑡) − 𝛿𝑐(𝑡)𝑑𝑡, to decompose them in a mixing matrix 𝑨 = Σc,k  and a source s. Independent 

Components (ICs) are obtained by applying the FastICA algorithm to the residuals. Table D2 shows 

model performance by comparing model-generated volatility Σc,k  term structure against actual market 

volatility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

Table D2: Volatility Term Structure 

This table compares actual market volatility of swap returns and estimated volatility using the term 

structure of swap prices variances. Sample period is from 6/1/2004 to 12/31/2012.Sample size is 2179 

observations. 

 

  
Market DF Model Relative Error Absolute Error 

M1 0.3264 0.3125 4.26% 4.26% 

M2 0.2613 0.2526 3.34% 3.34% 

M3 0.2191 0.213 2.78% 2.78% 

M4 0.2002 0.1963 1.97% 1.97% 

M5 0.1999 0.1873 6.30% 6.30% 

M6 0.1997 0.1855 7.09% 7.09% 

Q1 0.2245 0.1751 22.01% 22.01% 

Q2 0.1925 0.1634 15.09% 15.09% 

Q3 0.1831 0.1632 10.89% 10.89% 

Q4 0.1815 0.1542 15.04% 15.04% 

Q5 0.1843 0.1326 28.06% 28.06% 

Q6 0.1759 0.1217 30.79% 30.79% 

Y1 0.1738 0.1861 -7.09% 7.09% 

Y2 0.1506 0.1445 4.03% 4.03% 

Y3 0.1311 0.1249 4.70% 4.70% 

Y4 0.1237 0.1138 8.01% 8.01% 

Y5 0.1264 0.1111 12.07% 12.07% 

Y6 0.1336 0.1134 15.09% 15.09% 

     Average     10.25% 11.03% 
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Online Appendix E: Value at Risk 

 

To compare the performance of alternative models, we compute Value-at-Risk (VaR) at different 

probability levels over a one-day horizon. Given a portfolio P, a time T and a probability level Q, a loss 

L* is selected, at which exists a probability Q effective losses L, are at most L* in period T. The loss L* is 

portfolio´s  VaR.  Formally, 

 

Prob[L*  L] = Q           (E.1) 

 

and therefore VaRQ is a quintile of asset´s returns probability density function, which defines the 

maximum expected loss with confidence level Q. In the following, and to be consistent with the empirical 

evidence in our sample, we assume the expected one-day swap return is zero. A comparison of the VaR 

for standardized returns and for different probability levels, Q is shown in Figure E1, for the Normal 

distribution and for the NIG distribution with different kurtosis parameter values. With low significance 

levels (90% and 95%), the values of 𝑉𝑎𝑅𝑄
𝑁𝑜𝑟𝑚𝑎𝑙  tend to be higher (in absolute terms) than those of 

𝑉𝑎𝑅𝑄
𝑁𝐼𝐺 , so the latter measure will probably underestimate risk. However, with high significance levels 

(99% and beyond) there is a very substantial difference between the two measures, because 

the 𝑉𝑎𝑅𝑄
𝑁𝑜𝑟𝑚𝑎𝑙 strongly underestimates risk in comparison with 𝑉𝑎𝑅𝑄

𝑁𝐼𝐺 .  The difference between the two 

measures, for a given Q, is higher; the closer to the unity is the kurtosis parameter ξ. 

  

For the computation of the 1-day VaR for each swap contract, we proceed as follows. We 

assume the innovations in the spot model and in the HJM model are normal. However, and given the 

limited success of the spot price model in our sample, we use errors from the HJM model for the VaR 

calculations.  Therefore, we compute 𝑉𝑎𝑅(𝑖, 𝑇)𝑄
𝑁𝑜𝑟𝑚𝑎𝑙   as follows 

 

𝑉𝑎𝑅(𝑖, 𝑇)𝑄
𝑁𝑜𝑟𝑚𝑎𝑙 = 𝑘(𝜎𝑖,𝑇√∆𝑡)        (E.2) 

  

where the factor k (critical values) depends on Q as presented in Figure E1 and 𝜎𝑖,𝑇 is the volatility of the 

innovations of the forward prices generated by means of the HJM model. 

 

To compute the VaR with the SFP model, we consider each swap can be thought as a portfolio 

containing two stochastic factors and therefore its VaR should be computed using the standard VaR 

formula for a portfolio (Jorion, 2001). Using Equation (E.1), we define the VaR for the swap in market 

segment i and maturity T as follows  

 

𝑉𝑎𝑅𝑄
𝑁𝐼𝐺 [𝐹𝑖(𝑡, 𝑇)] = √𝑉𝑎𝑅𝑄[𝐹𝑖̅(𝑡)]2 + 𝑉𝑎𝑅𝑄[𝛾𝑖(𝑡, 𝑇)]2 + 2𝐶𝑜𝑣(𝐹𝑖̅(𝑡), 𝛾𝑖(𝑡, 𝑇))       (E.3) 

  

We compute the cumulative distributions functions for the NIG processes driving 𝐹𝑖(𝑡) and 

𝛾𝑖(𝑡, 𝑇) by means of numerical simulation. We compute the VaR for each component as follows 
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𝑉𝑎𝑅𝑄
𝑁𝐼𝐺 [𝐹𝑖̅(𝑡)] = 𝑘𝜉,𝜒(𝜃𝐹,𝑖̅̅ ̅̅ √∆𝑡)            (E.4) 

 

𝑉𝑎𝑅𝑄
𝑁𝐼𝐺 [𝛾𝑖(𝑡, 𝑇)] = 𝑘𝜉,𝜒(𝜃𝛾𝑖(𝑇)√∆𝑡)         (E.5) 

 

where factor 𝑘𝜉,𝜒 depends on Q and on  skewness and kurtosis. The volatilities 𝜃𝐹,𝑖̅̅ ̅̅ , 𝜃𝛾𝑖(𝑇) are the residual 

standard errors got from Equation (12) and reported in Table 5. We obtain covariance matrix  Ω = {𝜔𝑖,𝑗} 

(see Table 6) computed as follows 

 

𝐶𝑜𝑣(𝐹𝑖̅(𝑡), 𝛾𝑖(𝑡, 𝑇)) = 𝜃𝐹,𝑖̅̅ ̅̅ × 𝜃𝛾𝑖(𝑇) × 𝜔𝐹𝑖̅ ,𝛾𝑖(𝑇) 

 

Next, we compare the Failure Ratios (FR) of alternative models. We define FR as 

 

  𝐹𝑅 =
𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑉𝑎𝑅 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑉𝑎𝑅 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
=

𝑁/𝑇

𝑐
  

 

where 1-c is the confidence level, T is number of time periods (e.g. T=100 days) and a Failure appears 

when the realized loss (negative return) is larger than the VaR forecast. If the model producing the VaR 

forecasts is right in assessing the risk, we expect FR≈1. If the model underestimates, (overestimate) risk, 

then FR > 1 (FR < 1). To test the statistical difference from one of the estimated FR, we use a variation of 

Kupiec (1995) test, suggested by Campbell (2007). Under the assumption the VaR under consideration is 

accurate, the z-statistic has an approximate standard normal distribution and has a known exact finite 

sample distribution. The z statistic is the Wald variant of the likelihood ratio statistic proposed by Kupiec 

(1995). One potential advantage of the Wald test over the likelihood ratio test is that the former is well-

defined if there are no VaR violations. Kupiec’s test is not defined in this case. The possibility of no 

violations in a short period, is not trivial. The z-statistic is  

 

𝑧 =
√𝑇(

𝑁

𝑇
−𝑐)

√𝑐(1−𝑐)
               (E.6) 

 

A positive (negative) z statistic shows the model tends underestimate (overestimate) risk. We 

present the results in Table 8. 𝑉𝑎𝑅𝑄
𝑁𝑜𝑟𝑚𝑎𝑙  , calculated under the assumption of normality understates risk, 

and this understatement is very strong for high confidence levels (99.5% and 99.99%) suggesting that tail 

risk is severely underestimated. On the other hand   𝑉𝑎𝑅𝑄
𝑁𝐼𝐺  tends to overestimate risk at relatively low 

significance levels but can  account for extreme tail risk. It is worth noting that the overestimation of risk 

provided by the NIG distribution is proportionally much lower than the underestimation of risk produced 

by the normal distribution.  

 

One important practical implication of our results is as follows. We know VaR models allow 

users to control risk and decide how to divide limited resources. Financial intermediaries impose a capital 

charge to traders based on risk-adjusted capital. This creates a natural incentive for traders to take a 



17 
 

position only when they have strong views on markets. If they have no views, they should abstain from 

trading. Our results suggest that risk adjusted capital for traders using EEX swap electricity contracts 

should be adjusted upwards in comparison with the standard practice based on the normality assumption. 

Traders should also adjust positions as risk changes (in the face of an increasingly volatile environment a 

sensible response is to scale down positions). Furthermore and given that VaR is also a performance 

evaluation tool, the evaluators of traders’ performance should adjust their measures accordingly. 

 Figure E1: Critical values k 

 

The figure shows critical values k for Value-at-Risk computations in Equations (29), (31) and (32) for a 

number of  Levels of Significance (Q): Standardized Normal N(0,1) and NIG distributions 
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