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Literature Review

Samples 

There are several quantitative studies that estimate the impact of RPS policies on 

renewable energy deployment in the U.S.: Alagappan et al. (2011), Carley (2009), Delmas and

Montes-Sancho (2011), Dong (2012), Menz and Vachon (2006), Shrimali and Kneifel (2011), 

Yin and Powers (2010). Further, there is an emerging series of studies focusing on other 

regions. Marques et al. (2010; 2011) and Groba et al. (2011) study the effect of renewable 

energy policy in the EU. Salim and Rafiq (2012) conduct a similar study for several major 

emerging economies. 
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Models 

With the exception of the descriptive analysis of Alagappan et al. (2011), all studies 

use some form of a time series cross-section regression model. Menz and Vachon (2006) run 

OLS regressions without fixed effects for a sample of 37 U.S. states over 5 years. Carley 

(2009), Dong (2012), Groba et al. (2011), Marques et al. (2010), and Yin and Powers (2010) 

control for time trends and state-level effects. Shrimali and Kneifel (2011) additionally control

for state-specific time trends. Delmas and Montes-Sancho (2011) apply a two-stage regression

– logit and tobit – to cover public choice variables such as the influence of private interest 

groups on policymaking. Marques et al. (2011) assess the impact of socio-economic factors 

on RES-E development with a quantile regression. Salim and Rafiq (2012) run modified and 

dynamic OLS regressions.

Policy Covariates

The level of sophistication to capture the impact of policies also varies broadly. Menz 

and Vachon (2006), Marques et al. (2010), Alagappan et al. (2011), and Dong (2012) use 

binary variables to represent the existence of renewable energy policies. Carley (2009) applies

nominal variables to capture heterogeneity in policy design. Delmas and Montes-Sancho 

(2011) use the predicted probabilities of RPS adoption from their first stage regression as a 

covariate in the second stage regression. Shrimali and Kneifel (2011) use a “nominal” value 

of RPS stringency – also referred to as the annual RPS fraction – as reported in DSIRE 

(2012). Yin and Powers (2010) introduced the incremental share indicator (ISI) to quantify 

“the mandated increase in renewable generation in terms of the percentage of all generation” 

(Yin and Powers, 2010: 1142) of RPS policies. Groba et al. (2011) apply the ISI to an EU 

member countries sample. 
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Table 1 summarizes the research designs and major policy findings of previous 

econometric analyses. 

Table 1: Relevant empirical studies of renewable energy policy effectiveness

Article Sample
Time 
Frame

Model Type Dependent Variable Findings

Alagappan 
et al. (2011) 

14 transmission 
providers 

Summe
r 2010

- descriptive statistics - RES-E capacity ratio ° FIT binary

Carley 
(2009) 

48 U.S. states 
(without CA, TX)

1998- 
2006

- FE regression
- FE vector 

decomposition 
regerssion

- log of non-hydro RES-
E generation ratio

- absolute non-hydro 
RES-E generation

° RPS binary
* RPS trend
* regional RPS 
*** tax index 
*** financial incentive index

*** deregulation binary

Delmas and 
Montes-
Sancho 
(2011)

650 U.S. utilities in
48 U.S. states 
(without AK, HI)

1998- 
2007

- 1st stage: logit
- 2nd stage: tobit

- absolute RES-E 
capacity of utility

° RPS binary 
** MGPO binary 
** predicted RPS 
** predicted MGPO 
° DP binary 
° financial incentive index

Dong (2012) 53 countries
2005- 
2009

- FE regression
- annual wind capacity
- absolute wind capacity

** RPS binary 
* FIT binary

Groba et al. 
(2011)

26 EU member 
countries

1992- 
2008

- FE regression

- log of annual wind 
capacity

- log of annual solar 
capacity

*** ROI 
° ISI 
° tender binary 
° tax binary 

Marques et 
al. (2010)

24 European 
countries 

1990- 
2006

- FE regression
- FE vector decomp. 

- log of non-hydro RES-
E generation ratio 

° EU 2001 binary

Marques et 
al. (2011)

24 European 
countries 

1990- 
2006

- OLS regression
- quantile regression

- log of RES-E 
generation ratio

 

Menz and 
Vachon 
(2006)

37 U.S. states 
(states with wind 
capacity)

1998- 
2003

- OLS regression

- absolute wind capacity 
in 2003 

- growth after 1998/ 
2000

** RPS binary
° GDR binary 
*** MGPO binary 
° PBF binary 
° retail choice binary

Salim and 
Rafiq (2012)

Brazil, China, 
India, Indonesia, 
Philippines, Turkey

1980- 
2006

- modified OLS
- dynamic OLS 
- Granger causality 

- absolute RES-E 
consumption 

 

Shrimali 
and Kneifel 
(2011)

50 U.S. states
1991- 
2007

- FE regression with 
state-year fixed 
effects

- capacity ratios: non-
hydro RES-E, biomass, 
geothermal, solar, wind

° RPS + capacity stringency
*** RPS + sales stringency
° GPP binary 
*** MGPO binary 
*** CEF binary 

Yin and 
Powers 
(2010) 

50 U.S. states
1993- 
2006

- FE regression 
- non-hydro RES-E 

capacity ratio

** ISI
° RPS binary 
° RPS trend
** RPS fraction 
** MGPO binary 
° PBF binary 
° NM binary

Black: positive impact; grey/italic: negative impact; Significance: ***<1%, **<5%, *<10%, ° not 
statistically significant. CEF: clean energy funds; DP: disclosure program; FIT: feed-in tariff; GDR: 
generation disclosure requirement; GPP: green power purchasing; ISI: incremental share indicator (RPS); 
MGPO: mandatory green power option; NM: net metering; PBF: public benefit funds; ROI: return on 
investment (FIT).
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Results

Menz and Vachon (2006) find a significant positive effect of RPS policies on the 

development of wind capacity in the U.S. Since their model does not control for state 

characteristics and time trends, one can argue that the findings are not accurate enough to 

actually make a statement about real impact of RPS policies. Menz and Vachon (2006) do not 

explain why a random effects model is appropriate, for example by a Hausman (1978) Test. In

contrast, almost all other studies – including ours – have shown that state and year effects can 

be a major biasing factor. 

Carley (2009) does not find a significant link between an RPS binary indicator and the

share of electricity generated from RES-E in the U.S. Dong (2012), however, finds a negative 

and significant coefficient on the RPS binary indicator using cumulative wind capacity as the 

dependent variable. But, the coefficient is no longer significant when standard errors are 

clustered in a model that includes year trends, thus supporting the finding in Carley (2009). 

Carley (2009) also finds a positive and significant impact of an RPS trend variable, which 

represents the number of years since RPS enactment, on absolute generation. However, she 

shows that, after removing the state effects, the standard error on the RPS trend variable 

decreases, a finding which is consistent with state characteristics being an important driver of 

absolute RES-E deployment. 

Yin and Powers (2010) show that a RPS binary indicator and RPS trend variable do 

not have a significant relationship with the percentage of RES-E capacity in the U.S., with the

former supporting and latter contradicting Carley (2009). However, they estimate a negative 

and significant coefficient on the annual RPS fraction using the RES-E ratio as the dependent 

variable, a result that is also found in Shrimali and Kneifel (2011). They conclude that a more 

nuanced measure, the ISI, is needed to more accurately represent the stringency of RPS 

policies. In each of their regressions specifications, they find that the ISI variable has a 
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positive and significant impact on renewable deployment. However, Groba et al. (2011) do 

not find a significant coefficient of RPS policies (as measured by the ISI indicator) in six EU 

member countries using wind and solar PV added capacities as dependent variables.

In summary, Yin and Powers (2010) is the only study (that we are aware of) that 

showed that RPS policies have positively impacted aggregate RES-E deployment. Nearly 

every other study has found either a negative or no connection between RPS policies and 

RES-E development. At the technology-specific level, Menz and Vachon (2006) found a 

positive effect of RPS policies on wind capacity. However, their model does not include fixed 

effects, and Shrimali and Kneifel (2011), using fixed effects, report an completely opposite 

result. 

Data Review

Quantification

Previous econometric studies on the effectiveness of policies that are intended to 

stimulate RES-E deployment differ with respect to dependent variable selection. Quantifying 

RES-E deployment can be characterized along three dimensions. First, RES-E deployment 

can be measured in terms of capacity (watts) or actual generation (watt-hours). Second, 

multiple data sets on RES-E deployment are made available by the U.S. Energy Information 

Administration (EIA). State-level data can be aggregated from the raw EIA annual generator 

surveys – also referred to as the “generator-level dataset.” Alternatively, state-level aggregated

RES-E data can be directly downloaded – we refer to this as the “state-level dataset.” Third, 

renewable energy can be quantified in absolute terms or as a percentage of total electricity 

capacity (generation). The characterization of RES-E dependent variables in previous studies 

is shown in Table 2.

5



Table 2: Dependent variable selection in previous studies

Generation Capacity

Relative
(%) 

Generator Level Yin and Powers (2010)

State Level
Carley (2009) 
Marques et al. (2011)

Shrimali and Kneifel 
(2011)

Absolute

Generator Level 
Delmas and Montes-
Sancho (2011)

State Level
Carley (2009)
Groba et al. (2011)
Salim and Rafiq (2012)

Dong (2012)
Menz and Vachon (2006)

The italic studies investigate EU member countries, while the other studies work with the U.S. sample. Delmas 
and Montes-Sancho (2011) compiled data for 650 utilities while the other studies use the state as their core unit 
of analysis. Salim and Rafiq (2012) analyzed RES-E consumption in six major emerging countries. 

Sources

The U.S. Energy Information Agency (EIA) provides data for generation and capacity 

at both the generator level and the state level in the U.S. The EIA forms and documents that 

collect this data and their brief descriptions are shown in Table 3. 

Table 3: EIA data sources

Generation Capacity
G
e
n
e
r
a
t
o
r
-
L
e
v
e
l 

EIA Form EIA-906, EIA-920, and EIA-923 Data

“The EIA-906, EIA-920, EIA-923 and predecessor forms 
provide monthly and annual data on generation and fuel 
consumption at the power plant and prime mover levels. 
A subset of plants, steam-electric plants 10 MW and 
above, also provides boiler level and generator level 
data.”

http://205.254.135.24/cneaf/electricity/page/eia906_920.h
tml

EIA Form EIA-860 Annual Electric 
Generator Reports
“The Form EIA-860 is a generator-level survey 
that collects specific information about existing 
and planned generators and associated 
environmental equipment at electric power 
plants with 1 megawatt or greater of combined 
nameplate capacity.”
http://www.eia.gov/cneaf/electricity/page/eia860
.html

S
t
a
t
e
-
L
e
v
e
l

EIA Electric Power Annual 
“Detailed State Data: 1990-2010: Net Generation by 
State by Type of Producer by Energy Source”

http://www.eia.gov/electricity/data/state/

EIA Electric Power Annual 
“Detailed State Data: 1990-2010: Existing 
Nameplate and Net Summer Capacity by Energy
Source, Producer Type and State”
http://www.geia.gov/electricity/data/state/
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State-level data

Most studies use state-level data of the total electric power industry’s RES-E 

generation and capacity that is provided by the EIA Electric Power Annual. Figure 1 presents 

aggregate and technology-specific RES-E generation and capacity development. 

Figure 1: State-level generation and capacity development

Aggregated generator-level data

Yin and Powers (2010) use generator-level data. However, aggregating 1990-2010 

data from the EIA generator-level data faces several major challenges. 

In 2001, the classification of sources in the EIA generator-level data changed for both 

generation (EIA-906) and capacity (EIA-860). The change in the EIA’s classification scheme 

is complex and difficult to reconcile. Some changes are as simple as slight name changes (e.g.

from “Anthracite” to “Anthracite Coal”), while other changes merged classifications (e.g. 

from “Plutonium” and “Uranium” to “Nuclear”) or split classifications into two or more 

groups (e.g. from “Wood and Wood Waste” into “Wood Waste Solids” and “Wood Waste 

Liquids”). More difficult to reconcile changes are that dropped some sources from being 

recorded at all (e.g. “Methanol”) or added new sources (e.g. “Agriculture Crop 

Byproducts/Straw/Energy Crops”). Table 4 in the Appendices shows the classification in 

annual reports from 1990 to 2000 in comparison to the classification in annual reports from 

2001 to 2012. 

Most importantly, in addition to the changes in classification, in 2001 the EIA also 

included data for non-utility power generators in the EIA-906 and EIA-860 forms. However, 

this introduces an inconsistency – while the EIA-906/EIA-860 data contains both non-utility 
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generators and utility generators starting with 2001, pre-2001 data only contains data for 

utility generators. We worked closely with EIA to synchronize the databases as much as 

possible.

Figure 2 presents the non-hydro generation (EIA-906) and capacity (EIA-860) data 

that does not account for the exclusion of non-utilities prior to 2001 as solid lines. The dashed

lines show the same data but include the non-utility generators prior to 2001, using additional 

data from the EIA. This additional (i.e., non-utility generator) data for the years up to 2000 is 

taken from the EIA-867 (for capacity) and EIA-906nonu (for generation) forms. EIA also 

provided us with capacity data that was not available in EIA-867. 

We find that the sharp increase of the solid lines is mainly caused by the exclusion of 

non-utility generators prior to 2001. The solid lines illustrate that generation and capacity as 

recorded by the EIA-906 and EIA-860 forms alone increase abruptly after 2000. When we 

add the data from non-utilities for 1990 to 2000, as shown by the dashed lines, this abrupt 

increase vanishes. The remaining inaccuracy between 2000 and 2001 is most likely caused by 

the changes in classification that we outlined above. 

Figure 2: Generator-level generation and capacity development
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Classification Changes

Table 4: Classification Changes

1990 – 2000 classifications 2001 – 2012 classifications

ANT Anthracite AB
Agriculture Crop 
Byproducts/Straw/Energy 
Crops

BFG Blast Furnace Gas ANT Anthracite Coal
BIT Bituminous Coal BFG Blast-Furnace Gas
COG Coke Oven Gas BIT Bituminous Coal
COL Coal (generic) BLQ Black Liquor
COM Coal-Oil Mixture CUR Water, Current

CRU Crude Oil DFO
Disillate Fuel Oil (all Diesel,
and No. 1, No. 2, and No. 4 
Fuel Oils)

CWM Coal-Water Mixture GEO Geothermal
FO1 No. 1 Fuel Oil JF Jet Fuel
FO2 No. 2 Fuel Oil KER Kerosene
FO4 No. 4 Fuel Oil LFG Landfill Gas
FO5 No. 5 Fuel Oil LIG Lignite
FO6 No. 6 Fuel Oil MWH Megawatt Hour (MWh)
GAS Gas (generic) MSW Municipal Solid Waste
GST Geothermal Steam NA Not Available at this Time
JF Jet Fuel NG Natural Gas

KER Kerosene NUC
Nuclear (Uranium, 
Plutonium, Thorium)

LIG Lignite OBG
Other Biomass Gases 
(Digester Gas, Methane, and
other Biomass Gases)

LNG Liquified Natural Gas OBL

Other Biomass Liquids (Fish
Oil, Liquid Acetonitrite 
Waste, Medical Waste, Tall 
Oil, ethanol, Waste Alcohol, 
and other Biomass Liquids 
not specified)

LPG Liquified Propane Gas OBS

Other Biomass Solids 
(Animal Manure and Waste, 
Solid Byproducts, and Other 
Solid Biomass not specified)

MF Multifueled OG
Other Gas (Coke-Oven, Coal
Processes, Butane, Refinery, 
Other Process)

MTH Methanol OTH
Other (Batteries, Chemicals. 
Hydrogen, Pitch, Sulfur, 
Misc. technologies)

NG Natural Gas PC Petroleum Coke
PC Petroleum Coke PG Propane
PET Petroleum (generic) PUR Purchased Steam
PL Plutonium RC Refined Coal

REF
Refuse, Bagasse and all 
other nonwood waste

RFO
Residual Fuel Oil (Include 
No. 5, and No. 6 Fuel Oil, 
and Bunker C Fuel Oil)

RG Refinery Gas SG
Synthetic Gas, other than 
coal-derived

RRO Re-Refined Motor Oil SGC Coal-Derived Synthetic Gas
SNG Synthetic Natural Gas SLW Sludge waste
STM Steam SUB Subbituminous Coal

SUB Subbituminous Coal SUN
Solar (Photovoltaic, 
Thermal)

SUN Solar TDF Tires
TOP Topped Crude Oil TID Water, Tides
UR Uranium WAT Water, Conventional or 
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Pumped Storage

WAT Water WC
Waste/Other Coal (Culm, 
Gob, Coke, and Breeze)

WD Wood and Wood Waste WDL

Wood Waste Liquids (Red 
Liquor, Sludge Wood, Spent 
Sulfite Liquor, and other 
Wood Related Liquids not 
specified)

WH Waste Heat WDS

Wood/Wood Waste Solids 
(Paper Pellets, Railroad Ties,
Utility Poles, Wood Chips, 
and Other Wood Solids)

WND Wind WH Waste Heat
OT Other WND Wind

WO

Oil-Other, and Waste Oil 
(Butane (liquid), Crude Oil, 
Liquid Byproducts, Propane 
(liquid), Oil Waste, Re-
Refined Motor Oil, Sludge 
Oil, Tar Oil)

WV Water, Waves
The grey cells indicate non-hydro renewable energies.

Control Specification

Our full model includes state and year fixed effects. State effects control for 

preexisting RES-E capacity and time-invariant characteristics such as renewable energy 

resource availability. Time effects control for federal economic and policy impacts, economic 

and technological developments that are invariant across states but affect the overall 

development of RES-E. In our initial regressions, we use the suite of controls from Yin and 

Powers (2010) to produce comparable results. In subsequent specifications, we adopt 

additional controls.

State Income captures the median income of a 4-person household in 1000 $. We 

expect RES-E to increase more rapidly in wealthier states since they would be in the best 

position to absorb the additional costs involved in the shift from conventional to renewable 

energy production. 

Electricity Price represents the mean state electricity price in $ cents/ kWh. High 

electricity prices may lower market barriers for RES-E by making them appear more cost-

competitive, and support their deployment. On the other hand, high electricity prices may 
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foster reluctance to add further burden to the electricity bills due to RES-E capacity 

development. We lag this variable once – as in Yin and Powers (2010) – in order to avoid 

reverse causality. 

The electricity Import Ratio controls for the imbalance between domestic sales and 

out-of-state power generation. Following Yin and Powers (2010), we quantify the import ratio

as the percentage of net electricity imports and total electricity sales of the previous year. In 

order to reduce energy dependence, a high import ratio presumably advances domestic RES-E

capacity building. 

The LCV Score is an index created by the League of Conservation Voters (LCV) that 

tracks the voting behavior of state-level representatives and senators on environmental issues. 

We expect high LCV Scores to positively correlate with RES-E development since a voting 

record in favor of environmental issues intends to support renewable energy technologies. 

Data for the variables has been compiled from various EIA sources (see above), 

DSIRE (2012), the U.S. Census Bureau (2011), Wiser and Barbose (2008), Wiser et al. 

(2010), and the League of Conservation Voters (2011). Error: Reference source not found 

presents the summary statistics. 

Table 5: Summary Statistics

Obs Mean Std. Dev. Min Max Unit
RES-E Capacity Ratio (YP) 1050 1.46 3.02 0 23.93 %
RES-E Capacity Ratio (GL) 1050 2.00 3.40 0 23.93 %
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RES-E Capacity Ratio (SL) 1050 4.31 4.86 0 27.59 %
RES-E Generation Ratio (YP) 1050 1.56 3.02 0 26.08 %
RES-E Generation Ratio (GL) 1050 2.42 3.69 0 26.08 %
RES-E Generation Ratio (SL) 1050 2.72 4.23 0 37.14 %
ISI (YP) 1000 0.87 3.83 0 32.10 %
ISI (GL) 1000 0.87 3.83 0 32.10 %
ISI (SL) 1000 0.87 3.83 0 32.10 %
RPS Binary 1050 0.09 0.29 0 1 Binary
RPS Trend 1050 0.32 1.21 0 11 Years
RPS Yearly Fraction 1050 0.97 4.10 0 33 %
Alternative Compliance Payments 1050 14.66 89.79 0 711 $/MWh
Maximum Effective Retail Rate Increase 1050 0.03 0.17 0 1 %
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Unbundled REC 1050 0.08 0.27 0 1 Binary
REC Trading 1050 0.08 0.27 0 1 Binary
Contracting Mechanism 1050 0.05 0.22 0 1 Binary
Delivery to Region Index 1050 0.02 0.11 0 1 0-0.5-1
Delivery from Region Index 1050 0.03 0.17 0 1 0-0.5-1
RPS Market Size 1050 2.27 9.56 0 93.08 %
Neighbors with RPS 1050 16.42 25.24 0 100 %
Public Benefit Fund 1050 0.18 0.38 0 1 Binary
Net Metering 1050 0.37 0.48 0 1 Binary
Mandatory Green Power Option 1050 0.04 0.19 0 1 Binary
State Income 1050 50.16 7.99 30.44 73.60 1000 $
Electricity Price 1050 7.62 2.77 3.37 29.20 cents/kWh
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Import Ratio 1000 -18.43 63.00 -301.11 99.87 %
LCV Score 1050 47.20 26.92 0 100 0-100 index

The three ISI variables appear to have the same summary statistics. This is partly due 

to rounding to two decimal points. Further, recalling that the ISI consists of the RPS yearly 

fraction, the coverage of the RPS, total electricity sales, and RES-E generation in the previous

year, only the latter parameter differs between the ISI (YP) and the other two, ISI (GL) and ISI

(SL). In 2001, the year with the erroneous “jump” in the data that led us to distinguish 

between GL and YP, only Maine had a RPS effectively implemented. Thus, the difference 

between the three ISI variables is very small. 

The state income and the electricity price variable distribution are skewed, potentially 

requiring taking logarithms. However, in order to keep the suite of controls as close to Yin 

and Powers (2010) as possible, we end up not logging the variables. Though we sacrifice 

some rigor for comparability of results, we feel that this is justifiable because the overall 

estimates do not change much. 

In the matching analysis we also introduce variables that measure the technical 

potential of renewables at the state level, calculated using GIS data (NREL, 2012). These 

variables are presented in Error: Reference source not found.

Table 6: Matching covariates

Variable Years Matched On

State-level capacity ratio of RES-E to total electricity 1990 – year before RPS enacted
Ratio of solar energy technical potential to total generation 1990 – year before RPS enacted
Ratio of wind energy technical potential to total generation 1990 – year before RPS enacted
Per-household income 1 – 5 years prior to RPS enactment
GDP growth rate 1 – 5 years prior to RPS enactment
Population growth rate 1 – 5 years prior to RPS enactment
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Maine: An Outlier

Error: Reference source not found presents the range of year-to-year changes for RES-

E capacity ratio for the 50 U.S. states over 1990-2010. Figure 4 provides the corresponding 

line plots by state. Both figures show that Maine’s RES-E ratio appears to sharply decline 

from 1999 to 2000. This was due to the fact that, that by the end of 1999, Maine added 

roughly 1,500 MW of natural gas capacity to its total capacity of roughly 3,000 MW. Thus, 

Maine’s total electricity capacity increased by 50%, whereas its RES-E capacity remained 

relatively stable. As a result, the RES-E capacity ratio sharply decreased from 27% in 1999 to 

16% in 2000.

This event in Maine seems to be unprecedented in the panel as no other states shows 

such an abrupt decrease. The uniqueness of the time series of electricity capacity in Maine is 

independently corroborated in the matching in Section 4.7 of the paper, where the matching 

algorithm performs the worst for Maine due to the inability to find suitable matches for 

Maine’s unique RES-E ratio development. 

We also calculated the interquartile range (IQR) and found that some of Maine’s data 

points are greater – by a factor of more than 1.5 times the IQR – than the third quartile 

maximum. In line with the commonly used “1.5*IQR” criteria, we declare Maine to be an 

outlier in the sample. Henceforward, we will present our full regressions model on the base of

the full sample and without Maine in order to test the robustness of our full model. Shrimali 

and Kneifel (2011) also followed a similar strategy. 

Figure 3: Plot of maximum and minimum year-on-year change in RES-E capacity ratio
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Technology Analysis

In this section, we examine the impact of RPS and other polices on the capacity of 

specific RES-E technologies, namely biomass, geothermal, solar, and wind. Table 7 presents 

the key results. Specification (1) shows the results from the RES-E (i.e., total non-hydro 

renewable capacity) model. The technology-specific results in Specification (2)-(5) can then 

be compared to the RES-E results. Because of the dominant share of biomass in total 

renewable energy capacity, we split the biomass regression into Specification (2A) and (2B). 

The latter excludes Maine to test if the outlier is singlehandedly driving the value of the ISI 

coefficient.

Table 7: Full model results with technology-specific capacity ratios as dependent variables

RES-E Biomass Geotherma
l Solar Wind

(1) (2A) (2B) (3) (4) (5)

ISI (SL) -0.105*** -0.106** 0.001 -0.008 0.002 0.001
(0.036) (0.052) (-0.012) (0.007) (0.003) (0.041)

Public Benefit Fund (PBF) 
Binary

0.593 0.547** 0.323*** -0.026 -0.024 0.151
(0.486) (0.243) (-0.104) (0.044) (0.018) (0.353)
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Net Metering (NM) Binary
-1.058** 0.068 0.063 -0.014 0.019 -1.095**
(0.491) (0.125) (-0.115) (0.018) (0.012) (0.433)

Mandatory Green Power 
(MGPO) Binary 

3.882*** -0.002 0.198 0.025 -0.001 3.834***
(1.434) (0.176) (-0.147) (0.025) (0.016) (1.473)

State Income 0.118** 0.017* 0.013 -0.002 -0.000 0.104**
(0.049) (0.010) (-0.011) (0.001) (0.001) (0.048)

Electricity Price, lagged
-0.268* 0.081 0.013 0.002 0.003 -0.292
(0.142) (0.056) (-0.016) (0.011) (0.003) (0.181)

Import Ratio 0.031*** 0.007** 0.003** -0.000 0.000 0.023**
(0.010) (0.003) (-0.002) (0.000) (0.000) (0.010)

LCV Score 0.019** 0.002 0.000 0.001 0.000 0.013*
(0.009) (0.002) (-0.002) (0.000) (0.000) (0.007)
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State Effects yes yes yes yes yes yes
Year Effects yes yes yes yes yes yes
State Clusters (robust) yes yes yes yes yes yes

Time Frame 1990-
2010

1990-
2010

1990-
2010

1990-
2010

1990-
2010

1990-
2010

N 1,000 1,000 980 1,000 1,000 1,000
R-Square 0.883 0.968 0.943 0.986 0.794 0.608
Standard errors in parentheses. The dependent variable is the percentage of RES-E, biomass, geothermal, solar, 
or wind capacity to total annual electricity capacity on the base of state-level data. * Significant at 10%, ** 
Significant at 5%, *** Significant at 1%.

In general, the regressions with biomass turn out to be similar to the full model results 

in our full model in the article. Since biomass capacity is by far the largest among all RES-E 

capacities, we argue that biomass deployment potentially drives the overall results. 

ISI has a statistically significant negative effect on biomass capacity development, 

while no statistically significant link could be established between ISI and any of geothermal, 

solar, or wind development. That is, the negative impact of ISI on total renewable share is 

driven by the corresponding impact on biomass. However, after excluding Maine, the 

significance disappears for biomass in Table 7. Again, the outlier seems to bias the coefficient 

of the full sample. 
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The presence of a public benefit fund has a statistically significant positive impact on 

biomass capacity development. This finding is consistent with the hypothesis that biomass-

burning power plants have been the principal beneficiaries of this policy. On the other hand, 

no statistically significant link could be found between public benefit funds and the 

deployment of other renewable technologies. This result demonstrates the need to explore the 

impact of policies on individual renewable technologies; given that the corresponding analysis

for total RES-E capacity may not be nuanced enough to detect underlying impacts.

We estimate a significant negative coefficient on the existence of net metering on wind

development and insignificant coefficients on biomass and solar capacity. Mandatory green 

power options have a statistically significant positive effect on wind capacity development, 

while no statistically significant link could be found between the MGPO binary and any of 

biomass, geothermal, or solar development. That is, the presence of an MGPO policy appears 

to benefit wind power development that in turn determines the coefficient on the MGPO 

variable in the regression with total renewable share as the dependent variable.

State income – a proxy for state economic wealth – has been robustly positive and 

significant throughout the previous model specifications. Table 7 shows that the overall 

ceteris paribus effect of wealth on RES-E capacity can be narrowed down to strong positive 

effects on wind capacity and a small positive – albeit less significant – effect on biomass 

capacity. This is consistent with wealthier states being more able to invest in wind parks with 

high upfront costs, everything else being equal. The import ratio – a proxy for state energy 

dependence – shows a similar pattern. Biomass and wind capacity development is positively 

affected by an increase in electricity imports over exports. However, the effect is very small.
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Estimation of State-Level Causal Effects of RPS Enactment

So far, we have used regression adjustment and fixed effects to estimate causal effects 

in a parametric fashion that relies on conventional assumptions on the functional form of the 

response function. We now estimate state-level effects of enacting an RPS on future RES-E 

capacity deployment without any functional form assumptions. Rather than controlling for 

covariates that may drive RES-E development, we match states on important characteristics to

develop causal estimates of the effect of enacting an RPS. This allows us to estimate effects of

the RPS on individual states rather than average effects for all states. Further, these estimates 

have causal interpretations (Rubin, 2006).

In the matching framework, we define enactment of an RPS as a “treatment” and 

therefore we have 21 treated units (i.e., states) and 29 control units that never enact an RPS. 

We use six covariates to create matched synthetic control units. As in Abadie, Diamond, and 

Hainmueller (2010), we match on pre-treatment values of the dependent variable. We include 

the ratio of solar and wind technical potential (NREL, 2012) to total generation in pre-

treatment years to account for renewable energy development effort prior to enacting an RPS. 

We also include three demographic variables – per -household income, GDP growth, and 

population growth – in the 5 years prior to enacting an RPS to account for various 

socioeconomic factors that may affect how renewable deployment in a state may be affected 

by adopting an RPS. The matching covariates that we use to create synthetic controls are 

summarized in Table 6 in the Online Appendix.

We run the synthetic control algorithm in Abadie, Diamond, and Hainmueller (2011) 

to find optimal control units. For each of the 21 states that implement an RPS between 1990-

2010, the optimal synthetic control unit is defined as the convex combinations of the 29 

control units that minimize the mean squared prediction error between the treated and control 

unit during the pre-treatment period on the matching covariates. We drop states that differ 
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from their optimal synthetic control by two percentage points in the dependent variable during

their pre-treatment period. These states are CA, HI, MA, ME, MN, MT, NH, NM. Notably, 

Maine differs from its optimal synthetic control unit by the largest amount, 12.5 percentage 

points – this provides complementary evidence for dropping Maine in the regressions 

described in Section 5. Causal effect estimates are the difference in the outcome variable 

(RES-E ratio) in the post-treatment period between the treated unit and the weighted average 

of the control units, where the weights are given by the synthetic control algorithm. Annual 

causal effect estimates for the thirteen individual states that we are able to find suitable 

synthetic control matches for are displayed in Table 8. The values in Table 8 are presented 

graphically in .

Table 8: State-level causal effect estimates of RPS enactment

Years Relative to RPS Enactment
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

AZ 0.00 0.01 0.00 0.01 0.02 -
0.01

0.02 -
0.01

-
0.10

0.01 0.02 -
0.05

-
0.20

-
0.37

-
2.23

-
2.11

 

CO -
0.22

0.17 -
0.32

-
0.56

-
0.32

0.06 -
0.41

0.32 0.18 0.05 0.38 4.64 4.18 4.46 3.91   

CT 0.90 0.02 0.15 0.35 0.19 0.44 -
0.56

-
0.10

-
0.02

-
0.07

-
0.13

-
0.10

0.09 -
0.16

-
1.63

-
1.84

 

DE - - - - - - - - - 0.06 0.04 - - -    
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0.08 0.08 0.08 0.12 0.09 0.08 0.08 0.08 0.10 0.39 3.26 4.18
IL 0.03 -

0.10
-

0.15
-

0.25
-

0.24
-

0.17
-

0.16
-

0.14
-

0.40
0.76 0.78 -

0.81
-

1.13
    

MD 0.21 0.18 0.14 0.15 -
0.07

0.05 0.34 0.32 -
0.26

-
0.09

-
0.20

-
0.30

-
0.46

-
1.46

-
4.08

-
3.82

 

NJ -
0.06

-
0.13

0.05 0.02 0.05 0.03 0.15 0.10 -
0.13

-
0.12

0.07 -
0.09

-
0.96

-
1.43

-
1.78

-
3.58

-3.95

NV 0.10 0.15 0.12 0.17 0.15 -
0.41

-
0.27

-
0.08

0.34 0.17 -
0.07

0.26 -
0.31

0.02 -
0.51

-
1.21

-1.69

NY -
0.20

-
0.20

-
0.37

-
0.03

-
0.13

-
0.06

0.29 0.12 -
0.06

-
0.12

0.32 0.45 1.17 2.13 2.06   

OH -
0.04

-
0.08

-
0.01

0.05 0.07 0.06 -
0.06

-
0.19

-
0.04

0.01 -
0.41

-
2.79

-
3.55

    

PA -
0.03

-
0.33

-
0.22

0.10 0.21 0.12 -
0.35

-
0.63

-
0.43

-
0.55

-
0.25

-
0.34

-
0.71

-
1.05

   

RI -
0.35

-
0.26

-
0.25

-
0.27

-
0.14

0.09 -
0.08

-
0.07

-
0.24

0.09 0.02 -
0.06

-
0.45

-
1.92

-
2.28
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WI 0.06 -
0.11

-
0.06

-
0.12

-
0.10

-
0.20

0.02 0.12 -
0.08

0.35 -
0.23

-
0.99

-
1.40

-
0.44

-
2.30

-
2.81

 

AVG 0.0
2

-
0.0

6

-
0.0

8

-
0.0

4

-
0.0

3

-
0.0

1

-
0.0

9

-
0.0

2

-
0.1

0

0.0
4

0.0
3

-
0.0

4

-
0.5

4

-
0.4

0

-
0.9

8

-
2.5

6

-
2.8

2
Differences in the state-level capacity ratio of RES-E to total electricity of states that enact an RPS relative to 
their synthetic control unit. Values in the grey columns with negative headers help assess the quality of the 
matches: the closer these values are to zero, the better the match. Values in the columns with positive headers are
causal effect estimates in years since an RPS was enacted. 

Figure 5: State-level causal effect estimates of RPS enactment

For eleven of the thirteen states that we assess, the estimated causal effect of enacting 

an RPS is negative in the most recent year of data, 2010. Causal effect estimates are only 

positive in 2010 for Colorado and New York. Two years after RPS enactment, the mean causal

effect estimate is a decrease of 0.5 percentage points. Four years after RPS enactment, the 

mean causal estimate doubles to a decrease of 1.0 percentage points. The largest negative 

effect is for Delaware in 2010, a 4.2 percentage point drop in the outcome variable three years

after enacting an RPS. Given that the average value of RES-E over all states and in all years is

4.3 percent, these are economically significant effect estimates. The sign and magnitude of 

this effect is consistent with the negative effects we estimate in the article. It suggests that 

renewables are being deployed in states with and without RPS’s but, on average, states that do

not use an RPS appear to have deployed renewables more rapidly, perhaps by finding ways to 

deploy renewables through means other than an RPS. However, this analysis does not 

incorporate information about RPS policy design features or inter-state trading effects. 

Instead, it considers an RPS policy to be a binary “treatment” that is either in place or not. 

Therefore, these matching results do not contradict our findings in the article.  
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