Technology R&D as Greenhouse Insurance

Erin Baker
University of Massachusetts, Amherst

Leon Clarke
Joint Global Change Research Institute

John Weyant
Stanford University
Uncertainty and Emissions Control

- Uncertainty about how emissions today will cause damages tomorrow.
- But, we are learning more and more.
- Uncertainty, learning, and adaptation impact current decisions
- General conclusion: Uncertainty + Learning = less control of emissions.
 - Kolstad
 - Ulph & Ulph
 - Manne & Richels
 - Baker
What about R&D?

► R&D planning is complicated by different programs
 ● Solar PVs, windpower
 ● Efficiency of coal-fired electricity
 ● Gas turbines
 ● Sequestration

► How does optimal R&D change with
 ● Increasing risk and learning about climate damages
 ● choice of R&D program
Overview

► Explore in a top-down framework the response of optimal R&D to increasing risk

► Theoretical results indicate that there is no single directionality:
 ● How R&D is modeled matters, and
 ● How increasing risk is modeled matters.

► Confirm this in a IAM.

► Along the way, discuss approaches for representing R&D effects in top-down models.
Agenda

► Introduce Technological Change
► Introduce Increasing Risk
► Discuss Theoretical Model and Results
► Discuss Implementation in DICE
► Conclusions
How Might R&D Change Technology

Production Function

\[Q = f(\tau, \varepsilon) \]

Abatement Cost Curve

\[C = f(\mu) \]

\(\varepsilon = \) emissions

\(\tau = \) “standard” inputs

\(\mu = \) emission reductions
Many ways in which R&D might alter technology
What is Increasing Risk?

► “Risk” – “uncertainty” – “Mean-preserving-spread”
 - NOT A CHANGE IN THE MEAN!

► Many ways to create a mean-preserving spread.

Damage is on x-axis, Probability is on y-axis
Theoretical Model

- Two period model
 - R&D investments in first period;
 - Abatement and improved technology in the second

- Initial uncertainty regarding the damages from climate change
 - Resolved at the start of the second period

\[
\min_{\alpha} \ g(\alpha) + E_z \min_{\mu} c(\mu, \alpha) + D(\mu, z)
\]

Expected Costs of Abatement and Damages Assuming Optimal Abatement Behavior
Theoretical Results

\[\min_{\alpha} g(\alpha) + E_z \min_{\mu} c(\mu, \alpha) + D(\mu, z) \]

▶ Proposition: *For every R&D program, optimal R&D decreases with some increases in risk.*

 (Allowing for “Full abatement”)

▶ The converse is not true – some R&D programs will always decrease in risk.

▶ Individual R&D programs will react differently to an increase in risk.

▶ It is crucial to model the specific program.
Integrated Assessment Model

► William Nordhaus’s DICE
► Optimal Growth + Climate Model
► Added uncertainty, using stochastic programming
► Added R&D as a decision variable
 ● One time decision in 1st period before learning
 ● Cost reduction implemented in 50 years, after learning.
Two R&D Programs:
(1) Cost Reduction

The abatement cost curve pivots downward.
Two R&D Programs:
(2) Emissions Reduction

Production Function

\[Q = f(\tau, \varepsilon) \]

Abatement Cost Curve

\[C = f(\mu) \]

The abatement cost curve pivots to the right
R&D impacts convexity of cost curve / production function

Flatter \Rightarrow R&D increases in risk

More convex \Rightarrow R&D decreases in risk
2 Types of increasing risk

Increasing Probability

<table>
<thead>
<tr>
<th>Probability of high damage</th>
<th>certain</th>
<th>low</th>
<th>med</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>.018</td>
<td>.050</td>
<td>.083</td>
</tr>
<tr>
<td>Value of high damage</td>
<td>-</td>
<td>.042</td>
<td>.042</td>
<td>.042</td>
</tr>
<tr>
<td>Value of low damage</td>
<td>.0035</td>
<td>.0028</td>
<td>.0015</td>
<td>0</td>
</tr>
</tbody>
</table>

Increasing Damage

<table>
<thead>
<tr>
<th>Probability of high damage</th>
<th>certain</th>
<th>low</th>
<th>med</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>.018</td>
<td>.013</td>
<td>.0024</td>
</tr>
<tr>
<td>Value of high damage</td>
<td>-</td>
<td>.042</td>
<td>.057</td>
<td>.30</td>
</tr>
<tr>
<td>Value of low damage</td>
<td>.0035</td>
<td>.0028</td>
<td>.0028</td>
<td>0</td>
</tr>
</tbody>
</table>
Increasing Probability

Damage is on x-axis, Probability is on y-axis
Increasing Probability

Increasing Damage

Damage is on x-axis, Probability is on y-axis
Increasing Probability

Damage is on x-axis, Probability is on y-axis

Increasing Damage
Results – Increasing Probability

Optimal R&D vs. Probability of high damage

- Green line: Cost Reduction
- Blue line: Emissions Reduction

Billions of US$ vs. Probability of high damage
Results – Increasing Damages

- Optimal R&D
- Billions of US$

Graphs showing the relationship between % GDP Loss and Optimal R&D, and Billions of US$ with Emissions Reduction and Cost Reduction.
Conclusions

► R&D can be a hedge against uncertainty.
► But, it depends on what kind of R&D.
 ● R&D into reducing the cost of low carbon alternatives
► And what kind of risk.
 ● Increasing the probability of needing very low carbon technologies, rather than considering higher levels of damages.
DICE equations

\[Q_t = \frac{1}{1 + \theta_1 T + \theta_2 T^2} \left(1 - b_1 \mu_t^b_2 \right) A_t K_t^\gamma L_t^{(1 - \gamma)} \]

\[E_t = (1 - \mu_t) \sigma A_t K_t^\gamma L_t^{1 - \gamma} \]