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Objectives

• Develop a policy informing-tool for the technical-economic 
assessment of nuclear energy systems in a macro-economic 
energy development context. 

• Systems-Study Results are the appropriate language to 
communicate with Policy Makers – Who set R&D Funding 
Priorities

- They want to know outcomes given policy choices
- They aren’t interested in technical/engineering details

• System studies as an integral element of our technology 
programs to exert INFLUENCE on DOE priority selections 
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Objectives
• Several goals motivate this analysis effort

- Frame quantitative goals for AFCI
- Highlight urgency of the waste management issues
- Compare diverse fuel cycle scenarios

• Fuel cycle impact evaluated for limited set of scenarios
- Once-through and separations only
- Single MOX recycle
- Single and double tier transmutations systems

• Dynamic analysis of fuel cycle performance  
- Consider stable and growth scenarios
- Estimate of infrastructure requirements
- Impact of reprocessing on spent fuel characteristics
- Tracking of material inventories throughout entire fuel cycle
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Approach
• 100-year nuclear futures dynamic simulations work was 

performed in prior years using a code, DYMOND, developed for 
that purpose (Gen-IV Initiative)

- ITHINK system dynamics modeling environment
- Energy demand driven
- Mass flow based
- Dynamics of fuel cycle and reactor construction lag-times 

accounted for
• An improved code, DANESS, has been produced 

- Dynamic Analysis of Nuclear Energy System Strategies 
- Economic models; cost modeling development and evaluation 
- Cross flows of materials among reactor types
- Validated data base of reactor attributes and fuel cycle 

processing attributes for ease of scenario construction
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System Dynamics use in nuclear energy 
systems evaluation

• DYMOND/DANESS
- Integrated Process Models simulating nuclear energy systems from

Unat-mining until final disposal taking into account:
- Timing of operations, i.e. including history of ordering, licensing, 

constructing, operating, decommissioning, … of facilities
- Tracking primary mass flows but also secondary (waste) mass 

flows and, under development, LCA-related flows/emissions
- Scenario analysis tools as support to:

- Nuclear energy policy decision-making
- R&D, e.g. impact of reactor/facility technology options
- Nuclear energy economics
- Educational use

- Quick and user-friendly, e.g.
- 100 years 1 month time-step world simulation: < 4 min on PC
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Schematics of model
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DANESS© v2.0
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DANESS: Reactors Follow a Life-path
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Ithink software

Fortran
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Model Topology
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General Assumptions
• Front End 

- Mining from unlimited source of natural uranium
- Enrichment time is 1 year
- Tail enrichment is 0.2%
- Fabrication time is 1 year

• Reactors
- Reactor licensing time = 2 years, Construction time = 5 years
- Existing reactors and new reactors life time is 60 years.

• Reprocessing and Fabrication Plants
- Lifetime is more than 65 years, i.e., built >= year 2025, and continue to operate 

to end of the century. 
- SF Reprocessing time = 1year, Fabrication time = 1 year
- SF Cooling time = 5 years for LWR SF and 3 years for FR SF
- Reprocessing Losses = 0.2% (0.1% Fabrication, 0.1% Separation) for all 

actinides and for all reprocessing technologies considered, i.e. PUREX, UREX 
and dry reprocessing

- Dry reprocessing capacity for FR fuel will be made available according to the 
need for fabricating FR fuel (small fraction compared to needed LWR SF 
reprocessing capacity).
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General Assumptions (Continue)
• Legacy SF

- Legacy SF in year 2000: 
- ~ 14,700 MT UOX-33 (33GWd/t) 
- ~ 29,700 MT UOX-51(50GWd/t)

• Repository
- Legacy SF generated up to year 2000 goes first to repository followed by SF 

cooled for at least 10 years
- Reprocessing has higher priority than repository, so only >= 10 years old SF 

available after using the full reprocessing capacity is available for transfer to 
repository

- Ramp up acceptance rate of SF to repository
- At 2012=400MT, 2013=600MT, 2014=1200MT, 2015=2000MT, 2016 and 

beyond 3000MT 
• High Burnup Fuel

- 100 GWd/t High burnup fuel reduces the SF production rate by 50% as soon as it 
replaces lower 50 GWd/t fuel

- However, per MTHM the integrated decay heat is ~1.6x integrated decay heat 
from 1 MTHM of 50GWd/t burnup SF
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General Assumptions (Continue)
• Existing reactor park

- Assume life extension to 60 years 
- Total capacity in 2000 ~ 97.2 GWe (103 reactors , 0.95 GWe each, 

and has a capacity factor of 0.9, and 0.34 thermal efficiency) 
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Input Data

- Reactor Data
- MWth, MWe, BU%, Capacity factor, Lifetime, # batches
- LWR, ALWR, FR

- Fuel Data
- Fresh fuel composition
- SF composition
- Pu, U, FP, MA, U enrichment
- Decay heat for repository calculations:

• Pu238, Pu239, Pu240, Pu241, Am241, Cs137, Sr90
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Input Data (continue)

• FR Data
- BOEC startup core consists of 4573 kg HM and 2515 kg TRU
- BOEC recycle core consists of 4566 kg HM and 3110 kg TRU
- For the startup core, the feed rate is 813 kg-TRU/year from 

conventional LWR SNF. 
- For the equilibrium recycle, the recycled TRU from fast reactors

= 767 kg/year and the makeup TRU from conventional LWR SNF 
= 223 kg/year

- The fast reactor power is 840 MWth (thermal efficiency = 38%)
- Fuel residence time in FR is about 3.5 years.
- Burnup = 176 GWd/t
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Scenario 1
• Timeline

- Starting 2010
- Demand growth (1.8%)

- Starting 2015
- Use high burnup, 100 GWd/t fuel in all reactors

- Starting 2025
- SF reprocessing

• First commercial plant (800 MT/yr) starts in 2025 followed 
by an upgrade to 2,000 MT/yr in 2035 and 3,000 MT/yr 
total capacities in 2055.

- FR deployment 
• FOAK FR , followed by full deployment of FRs 5 years 

later, at a maximum rate of 1.6 GWe/yr (5 FR burners/yr)
- Starting 2028

- Replace retiring LWRs with FRs to meet new energy demand if 
possible
- If there is not enough TRU for FRs, build new ALWRs
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Scenario Assumptions
• Assumptions

- Nuclear energy growth to maintain 20% market share (1.8% growth 
rate)

- Military SNF to repository rate is 500 MT/y starting 2012 (total 7000 MT 
– also includes, as a surrogate, DOE SNF and HLW going to repository)

- LWR SNF is initial 43,200 MT existing in year 2000, and it is sent first to 
repository

- Fission Products are directly sent to repository following reprocessing
- Deployment of FRs is limited to a maximum of about 1.6 GWe/y

(correspond to 5 FR burners of about 3.2 GWe each), beyond 2030
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Scenario 1 (Results)
1.8% Growth Rate starting 2010
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Scenario 1
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- SNF temporary storage requirements are minimized
- With reprocessing, storage requirement decline

- By about 2030, storage requirements are < 
storage requirements in 2000

- Eventually storage requirements starts to 
increase after a 2043 minimum

- Direct disposal of large amounts of SNF in repository
- By 2028 all 2000 legacy SF is transferred to 

repository
- By 2043, all SF production goes to reprocessing

- No more transfer to repository until ~ 2088 
when SF available exceeds the  
reprocessing needs

- SF in repository reach ~ 94,000 MT by 
2043 (including military & DOE 7000 MT)

- FR% of total capacity increases gradually to reach 
about 18%, and large decline starts 2090 because of 
the retirement of FRs built in 2030, while TRU 
inventory is not large enough to make up for those 
reactors and also response to increase in demand
- This can be avoided by increasing the 

reprocessing capacity a few years earlier
- Inventory of Pu (from reprocessed SF) at any point 

in time is < 150 tons
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Example Scenario Results
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Possible Conclusions
• Original goal to reduce the inventory of spent fuel and key 

waste species is difficult to achieve
- Mass of spent fuel is reduced by reprocessing
- Inventory of plutonium and/or minor actinides can only be 

reduced by large infrastructure of transmuter (either advanced 
thermal or fast) systems
- Both reprocessing capacity and transmuter inventory 

requirements constrain the introduction rate
- Recommendation is to re-define goal to stabilization of the 

plutonium and/or minor actinide inventory
• In contrast, significant reduction in key repository performance

parameters can be achieved
- Large inventory is retained in the transmuter fuel cycle
- Decay heat sent to waste can be drastically reduced
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Achievements
• 100-year nuclear futures dynamic simulations work was 

performed in prior years using a code, DYMOND, developed for 
that purpose

- Energy demand driven
- Mass flow based
- Dynamics of fuel cycle and reactor construction lag-times 

accounted for
• An improved code, DANESS, has been produced 

- Economic models
- Cross flows of materials among reactor types
- Validated data base of reactor attributes and fuel cycle 

processing attributes for ease of scenario construction
• US-centric scenarios run for 6-Lab Report, AFCI Scenarios
• DANESS work on multi-regional fuel cycle, and other European 

scenarios
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Achievements
• DANESS model development and verification
• Economic scenario studies

- 6-Lab directors report on nuclear energy
- Dynamic analysis of nuclear energy system strategies for 

electricity and hydrogen production in the US 
• Support of AFCI (Advanced Fuel Cycle Initiative) scenarios

- Frame quantitative goals for the AFCI, to highlight the urgency of 
the waste management issues, and compare diverse scenarios.  

- Impact evaluated for a limited set of deployment scenarios 
- Impact on Yucca Mountain capacity extensions imparted as an 

outcome of various forms of partitioning and/or recycle  
• Publish Policy-Informing Scenario Outcomes

- Numerous publications in Global 03, ICAPP04, PHYSOR04
- Organized energy futures session in Global03
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Collaborations and outreach activities

• Collaborations
- Paul Scherrer Institute (Switzerland)

- Renown worldwide expert on LCA
- Very much interested in our nuclear dynamic systems modelling
- ANL & PSI envisage development of more appropriate approaches to LCA
- ‘Seed Money’ proposal within PSI to support collaboration

- U-NERI with three universities
- DANESS-Users: NRG (Netherlands), KAERI (Korea), …

• Outreach activities
- DANESS Users

- Quest for LCI-data for new nuclear technologies
- Generation-IV International Forum

- Sustainability Assessment Working Group proposed
- IAEA, Department of State: 

- Multi-regional fuel cycle and non-proliferation
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Example Scenario
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Economics

• Actual energy costs ($/kWh)
• (Net) Present Values
• Account of federal, state, local, sales taxes

• Capital
- Construction
- Capital charges
- Other (overnight) costs
- Decommissioning
- Contingencies

• O&M
• Fuel Cycle

- Owning or leasing fuel
- Waste fees

• Financial Accounting keeps track of the revenues and expenses for each 
reactor, facility and owner
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Deployment Objectives

• Only HLW emplaced in YM
• Reprocess SF such that

- Legacy SF worked down first
- Allow realistic FR-deployment without

- Growing stock of separated TRUs
- Keeping SF-storage needs reasonable

• Aim at 
- Positive NPV
- Negative cash-flows as small as possible



30

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

“BASE CASE” for cases 4 & 5

• Base case for government consists of
- Constructing and operating all Repro/refab and FR plants
- Selling electricity from FRs at average market price (3.5 c/kWhe)

- FR capital cost = 2500 $/kWe
- O&M costs repro/refab = 6%/yr of initial investment

File: /odin/ldurpel/DANESS/DANESS USA Results/BASE CASE.xls
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Case A

• FR capacity, if possible, 25% of new reactors
• Repro/Refab Capacity

0.8259.86220002085

0.628.23615002015

0.2064.17155002010

0.8259.86220002020

0.8259.86220002065

O&M Cost (B$/yr)Capital Cost (B$)Capacity (MtHM/yr)Time of Ordering
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Results Case A

• Total amount of SF in fuel cycle remains about YM licensed
capacity
• No TRU build-up in fuel cycle
• NPV = 12.6 B$
• Cash-flow

- Most negative = -4.0 B$ in 2020
- Becomes positive in 2030
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BASE CASE: Government Revenues and Expenses

Government Revenues and Expenses

-10

0

10

20

30

40

50

2000 2020 2040 2060 2080

Years

B
$ 20

00
/y

r

-10

0

10

20

30

40

50

Capital Repro/Refab OM Costs Repro/Refab Capital FR OM Costs FR

YM Cost Waste Fee FR Elec Rev Cashflow



34

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

BASE CASE: Energy produced

Energy Demand and Production
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BASE CASE: Operating Capacity

Operating Reactor Capacity
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U Price Model
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Economics

• Revenuses
- Price for electricity = 3.5 c/kWhe
- Waste Fee = 1 mills/kWhe collected for generated waste

• Costs
- FR capital and O&M costs
- Reprocessing Plants capital and O&M costs
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Economics (continued)

• FR Costs

• Reprocessing Costs

1.51492NOAK (>= 5th FR)

1.51773FOAK

O&M Cost (c/kWhe)Capital Cost ($/kWe)Time

0.628.2361500

0.8259.8622000
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Economics
Government Revenues and Expenses
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Economics

• Fuel cycle cost accounts for less than 1/5th of total cost
• Doubling of U-price results into a total cost increase by less than 5%
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Macro-economic aspects

• Carbon-tax
• Energy price stability

- Significant impact on economy



42

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy



43

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Examples of outcome using LCA
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Objectives for DANESS
•• To be the standard for To be the standard for 

- an easy-to-use and quick policy-informing tool for the technical-economic 
assessment of nuclear energy systems in a macro-economic energy 
development context

Policy-Making

R&D Portfolio

Technical Analysis
Neutronics
Mass-flows

Technology characterization

Energy System development
Scenario analysis

Integrated Process Models

Energy Market
Energy Products

Sustainability

Nuclear Energy

Fossil-based energy technologies

Renewables

Sustainability Indicators
Energy Economics
Market Penetration
Life Cycle Analysis
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General Assumptions (Continue)

StationName ReactorType NetCapacity CommercialOperation Remaining years after 2000 before SD
OYSTER BWR 650 01-Dec-69 29

NINE MILE BWR 613 01-Dec-69 29
DRESDEN-2 BWR 784 09-Jun-70 30
DRESDEN-3 BWR 794 16-Nov-71 31

QUAD BWR 789 18-Feb-73 33
BROWNS BWR 1065 01-Aug-74 34
BROWNS BWR 1065 01-Mar-75 35

MONTICELL BWR 542 30-Jun-71 31
QUAD BWR 789 10-Mar-73 33

VERMONT BWR 522 30-Nov-72 32
PEACH BWR 1055 05-Jul-74 34
PEACH BWR 1035 23-Dec-74 34

PILGRIM-1 BWR 670 01-Dec-72 32
BROWNS BWR 1065 01-Mar-77 37
COOPER BWR 778 01-Jul-74 34
HATCH-1 BWR 797 31-Dec-75 35

BRUNSWICK- BWR 821 03-Nov-75 35
BRUNSWICK- BWR 821 18-Mar-77 37

DUANE BWR 538 01-Feb-75 35
FITZPATRIC BWR 820 28-Jul-75 35

ENRICO BWR 1093 23-Jan-88 48
LIMERICK-1 BWR 1055 01-Feb-86 46
LIMERICK-2 BWR 1055 08-Jan-90 50

HOPE BWR 1031 20-Dec-86 46
HATCH-2 BWR 806 05-Sep-79 39

LA SALLE-1 BWR 1078 01-Jan-84 44
LA SALLE-2 BWR 1078 19-Oct-84 44

SUSQUEHAN BWR 1050 08-Jun-83 43
SUSQUEHAN BWR 1050 12-Feb-85 45
COLUMBIA-2 BWR 1117 13-Dec-84 44

NINE MILE BWR 1062 11-Mar-88 48
GRAND BWR 1210 01-Jul-85 45

PERRY-1 BWR 1205 18-Nov-87 47
RIVER BEND- BWR 936 16-Jun-86 46

CLINTON BWR 950 24-Nov-87 47
R.E. GINNA PWR 470 01-Jul-70 30

INDIAN PWR 939 15-Aug-74 34
TURKEY PWR 666 14-Dec-72 32
TURKEY PWR 666 07-Sep-73 33

PALISADES- PWR 805 31-Dec-71 31
H.B. PWR 718 07-Mar-71 31

POINT PWR 485 21-Dec-70 30
OCONEE-1 PWR 846 15-Jul-73 33
OCONEE-2 PWR 846 09-Sep-74 34
SALEM-1 PWR 1106 30-Jun-77 37
DIABLO PWR 1073 07-May-85 45

SURRY-1 PWR 788 22-Dec-72 32
SURRY-2 PWR 788 01-May-73 33
PRAIRIE PWR 536 16-Dec-73 33

FORT PWR 476 20-Jun-74 34
INDIAN PWR 965 30-Aug-76 36

Operational Reactors in US, Year 2000
StationName ReactorType NetCapacity CommercialOperation Remaining years after 2000 before SD
OCONEE-3 PWR 846 16-Dec-74 34

THREE MILE PWR 819 02-Sep-74 34
POINT PWR 485 01-Oct-72 32

CRYSTAL PWR 821 13-Mar-77 37
KEWAUNEE PWR 540 16-Jun-74 34

PRAIRIE PWR 536 21-Dec-74 34
SALEM-2 PWR 1106 13-Oct-81 41

ARKANSAS-1 PWR 836 19-Dec-74 34
DONALD PWR 1020 27-Aug-75 35
DONALD PWR 1060 01-Jul-78 38
CALVERT PWR 865 08-May-75 35
CALVERT PWR 865 01-Apr-77 37
DIABLO PWR 1087 13-Mar-86 46

SEQUOYAH- PWR 1141 01-Jul-81 41
SEQUOYAH- PWR 1136 01-Jun-82 42

BEAVER PWR 833 01-Oct-76 36
ST. LUCIE-1 PWR 839 21-Dec-76 36
MILLSTONE- PWR 858 26-Dec-75 35

NORTH PWR 907 06-Jun-78 38
NORTH PWR 907 14-Dec-80 40
DAVIS PWR 906 31-Jul-78 38

FARLEY-1 PWR 829 01-Dec-77 37
SAN PWR 1070 08-Aug-83 43
SAN PWR 1080 01-Apr-84 44

FARLEY-2 PWR 829 30-Jul-81 41
ARKANSAS-2 PWR 858 26-Mar-80 40
MCGUIRE-1 PWR 1129 01-Dec-81 41
MCGUIRE-2 PWR 1129 01-Mar-84 44
WATERFOR PWR 1075 24-Sep-85 45
ST. LUCIE-2 PWR 839 08-Aug-83 43

WATTS BAR- PWR 1154 05-May-96 56
VIRGIL C. PWR 895 01-Jan-84 44
SHEARON PWR 900 02-May-87 47
BEAVER PWR 833 17-Nov-87 47

CATAWBA-1 PWR 1129 29-Jun-85 45
CATAWBA-2 PWR 1129 19-Aug-86 46
MILLSTONE- PWR 1150 23-Apr-86 46
VOGTLE-1 PWR 1158 01-Jun-87 47
VOGTLE-2 PWR 1158 20-May-89 49

SEABROOK- PWR 1161 19-Aug-90 50
COMANCHE PWR 1150 13-Aug-90 50
COMANCHE PWR 1150 03-Aug-93 53

BYRON-1 PWR 1120 16-Sep-85 45
BYRON-2 PWR 1120 21-Aug-87 47

BRAIDWOOD- PWR 1120 29-Jul-88 48
BRAIDWOOD- PWR 1120 17-Oct-88 48

WOLF PWR 1150 03-Sep-85 45
CALLAWAY- PWR 1143 19-Dec-84 44

SOUTH PWR 1251 25-Aug-88 48
SOUTH PWR 1250 19-Jun-89 49
PALO PWR 1270 28-Jan-86 46
PALO PWR 1270 19-Sep-86 46
PALO PWR 1270 08-Jan-88 48

Operational Reactors in US, Year 2000

• Existing reactor park
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Scenario 1.a
• Timeline

- Similar to scenario 1
• Assumptions

- Similar to scenario 1 except for the 0% demand growth rate
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Scenario 1.a
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Scenario 1.a
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- SNF temporary storage requirements are minimal
- With reprocessing, storage requirement decline

- By about 2028, storage requirements are < 
storage requirements in 2000

- Direct disposal of large amounts of SNF in repository
- By 2028 all 2000 legacy SF is transferred to 

repository
- By 2041, all SF production goes to reprocessing

- No more transfer to repository to 2100
- SF in repository reach ~ 86,000 MT by 

2041 (including military & DOE 7000 MT)
- By 2043, all existing reactor are retired and replaced 

by new LWRs and/or FRs, and no new reactors are 
built until 2087 when LWRs built in 2028 are retired
- Those ALWRs retired in 2087are replaced by 

FRs, which increase the FR% in capacity
- By 2043, FR% in capacity reaches about 22.5%
- Increase in FRs starting 2087 leads to FR% in 

capacity of about 28% by 2090
- Inventory of Pu (from reprocessed SF) at any point 

in time is < 150 tons
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Scenario 1.a
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Total Amount of UOX Reprocessing Rate at 1.8% Growth Rate 
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Scenario 1.b

• Timeline
- Similar to scenario 1 except for the need to deploy more 

reprocessing capacity to handle the extra waste (see figure)
• Assumptions

- Similar to scenario 1 except for the higher demand growth rate of 
3.2% per year



51

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Scenario 1.b
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Scenario 1.b
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- SNF temporary storage requirements are minimized
- With reprocessing, storage requirement decline

- By about 2035, storage requirements are < 
storage requirements in 2000

- Eventually storage requirements starts to 
increase after a 2045 minimum

- Direct disposal of large amounts of SNF in repository
- By 2028 all 2000 legacy SF is transferred to 

repository
- By 2062, all SF production goes to reprocessing

- No more transfer to repository to 2100
- SF in repository reach ~ 118,000 MT by 

2062 (including military & DOE 7000 MT)
• Most of it is high burnup fuel

- To 2055, reprocessing capacity is assumed to be the 
same as scenario 1, and beyond 2055 it is increased 
rapidly to catch up with the high SF production rate
- Buildup of FRs/year is allowed to go up 

gradually from 1.5 GWe/year in 2055 to about 
7.3 GWe by 2095. 

- FR% reach about 14% (lower than the 1.8% 
growth rate because of the faster growth rate 
and the lake of enough TRU to build FR fast 
enough to respond to increased demand)

- Inventory of Pu (from reprocessed SF) at any point 
in time is < 150 tons
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Scenario 1.b

3.2% Growth Rate 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2000 2020 2040 2060 2080

Year

G
W

e

FR

LWR (100 GWd/t Fuel starts 2015)

Pu from Reprocessed SF but not used 
(3.2% Growth )

0

50

100

150

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
Year

M
as

s,
 M

Ts

Unused Pu

0.0

10.0

20.0

30.0

40.0

50.0

60.0

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
Year

N
ew

 C
ap

ac
ity

 p
er

 Y
ea

r, 
G

W
e 

pe
r y

LWR New Capacity

FR New Capacity

 

Total Amount of UOX Reprocessing Rate at 3.2% Growth Rate 
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Scenario 1.c

• Timeline
- Phase out scenario where retired plants are not replaced
- Still use high burnup fuel starting 2015

• Assumptions
- Same assumptions as scenario 1 regarding repository timeline
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Scenario 1.c
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Scenario 1.c

Phase Out Scenario
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- SNF temporary storage requirements are 
eliminated by about 2050

- Direct disposal of large amounts of SNF in 
repository, that totals about 108,000 MT by 
2050 (compared to about 118,000 MT for the 
3.2% growth scenario)

- Majority of the SF in repository is high burnup
SF



57

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Scenario 1.c.1

• Timeline
- Phase out scenario where retired plants are not replaced
- No use of high burnup fuel

• Assumptions
- Same assumptions as scenario 1 regarding repository timeline
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Scenario 1.c.1
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Scenario 1.c.1

Phase Out Scenario
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- SNF temporary storage requirements are 
eliminated by about 2057

- Direct disposal of large amounts of SNF in 
repository, that totals about 135,500 MT by 
2057 (compared to about 118,000 MT for the 
3.2% growth scenario)

- All of the SF in repository is lower burnup SF


