"Sustainability Indicators for Energy Systems to Enhance Decision Making Processes"

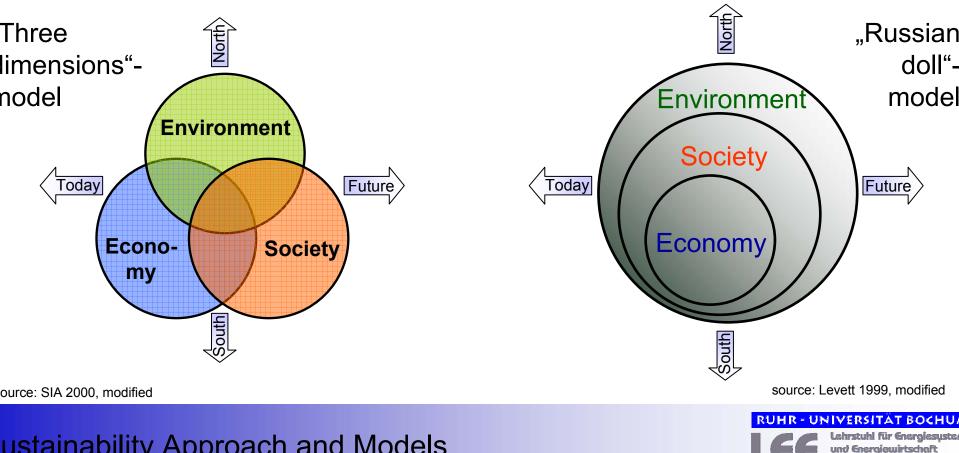
25th USAEE/IAEE North American Conference, September 18 – 21, 2005 Interlocken, Denver / Colorado

T. J. Petrovic and H.-J. Wagner

Chair for Energy Systems and Energy Economics Ruhr-University Bochum e-mail: lee@lee.rub.de

- Motivation
- What does "sustainability" mean for the energy sector?
- Sustainability indicators
- Evaluation of energy systems
- Conclusion

rrstuhl für Energiesyste 9 Energiewirtschaft 16. Dr.-Ing. H.-J. Wagne


- \rightarrow Guidance for investment planning
- \rightarrow Technological impact assessment
- \rightarrow Future planning (scenarios)
- \rightarrow Verification: Compliance with political targets?
- \rightarrow System benchmarking
- \rightarrow Identification of main research areas

Indicators / Indicator systems

Prof. Dr.-Ing. H.-J. Wagner

"Sustainable Development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs" source: UN 1987, p. 54 ("Brundtland report")

ustainability Approach and Models

RUHR - UNIVERSITAT BOCHU

hrstuhl für Energiesuster

und Energiewirtschaft Prof. Dr.-Ing. H.-J. Wagner

Energy security related risks

Cumulated Energy Demand

Energy Costs

Gross Employment Effects

> Usage of Air Resources

Usage of Water Resources

Land Use

vervie

- Covering supply, technical and economical related risks
- Aggregation via measure for concentration tendencies (Hirschman-Herfindahl index)
- According to VDI guideline 4600: totality of energetic expenditures
- Distinction of sustainable / non-sustainable energy expenditures
- Calculation with annuity method according to VDI guideline 2067
 A 5% discount rate was used.
- Induced by installation of 1.000 MW capacity of a specific technology
 Comparison of two scenarios: "business as usual" vs. "installation"
 Software: MARES*forte*
- Critical air volume that is necessary to attenuate emissions accurate to limits that are defined and regulated by law
- Critical water volume that is necessary to attenuate water based pollutants accurate to limits that are defined and regulated by law
- Direct land use by energy system and infrastructure
 Indirect land use due to visual disturbance of the environment (= buffer area trading off the visual impact)

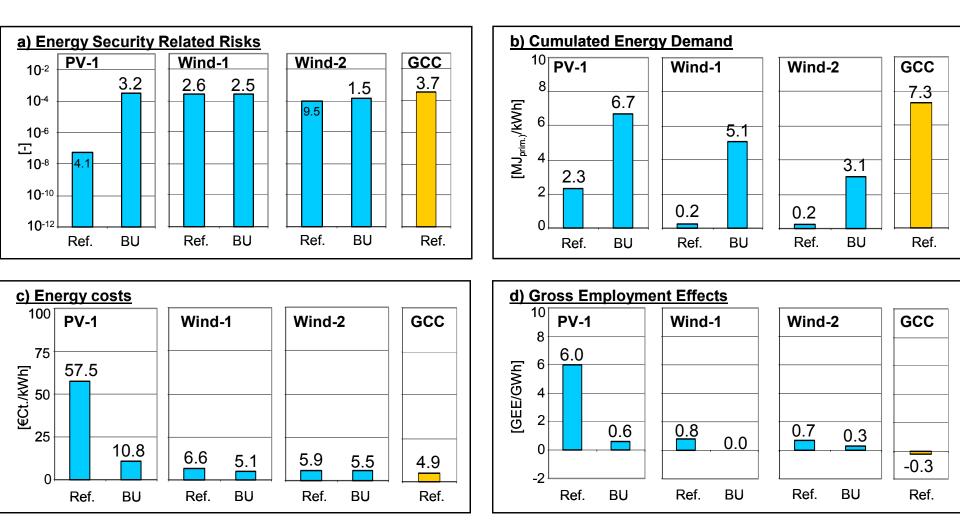
hotovoltaics field system

Lehrstuhl für Energiesyster und Energiewirtschaft Prof. Dr.-Ing. H.-J. Wagner

/ind energy converter

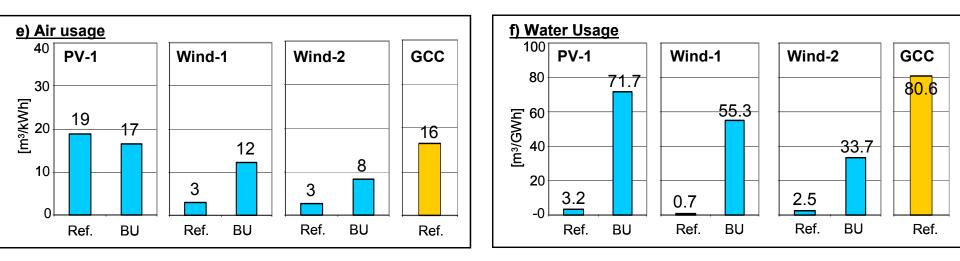
Lehrstuhl für Energiesyster und Energiewirtschaft Prof. Dr.-Ing. H.-J. Wagner

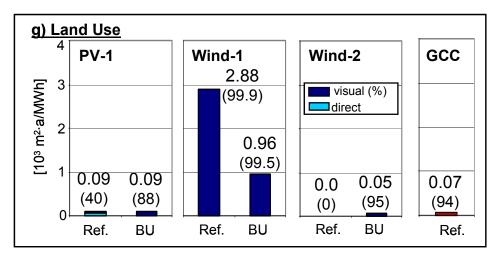
Reference System	PV System	Wind energy converters onshore offshore		GCC plant
Installed capacity [MW]	0.5	1.5	5.0	353.0
Expected lifetime: System (IS*) [a]	20 / (40)	20 / (40)	20 / (40)	30 / (40)
System efficiency [%]	13.2	53.6	47.7	58.0
Solar irradiation [W/m ²]	1,000	-	-	-
Wind speed [m/s]	-	6.5	9.0	-
Capacity factor [%]	8.8	25.1	47.9	79.9
Investment costs (IVC) [€/kW]	5,110	1,250	1,700	1,330
Operational costs p. a. [% of IVC]	0.50	6.0	8.0	3.3


*IS: Infrastructure

escription of reference systems

Lehrstuhl für Energiesyster und Energiewirtschaft Prof. Dr.-Ing. H.-J. Wagner




nergy systems with backup

EE und G

und Gnergiewirtschaft Prof. Dr.-Ing. H.-J. Wagner

nergy systems with backup

- → Development of transparent procedures for review and selection of sustainability indicators.
- → Gaps concerning the social-economic dimension of sustainability could be closed by new indicators:
 - energy security related risks
 - gross employment effects.
- → Practicability of the indicator system is guaranteed due to a small number of indicators.

- → Renewable energy systems can clearly contribute to a sustainable development of the energy sector.
- → Strengths and weaknesses regarding individual indicators illustrate need for a diversified structure of the energy system.
- → The integrated view on energy and backup systems laeds to a poorer performance regarding most sustainability indicators.
- → However, the combination of renewable and conventional energy systems is beneficial compared to a stand-alone conventional power plant.

Thank you for your attention!

- → Energy Security Related Risks: Risks attributed to inconstant renewable energy supplies lie in the same range as geopolitical risks due to natural gas imports (GCC plant).
- → <u>Cumulated Energy Demand</u>:
 - energetic expenditures for power generation are lowest for wind energy systems and highest for the GCC plant,
 - most of the expenditures for the GCC plant are "non-sustainable".

\rightarrow Energy costs:

- wind power generation is almost competitive with GCC plant,
- PV is an order of magnitude more expensive.

\rightarrow Employment effects:

- renewable systems show well positive effects,
- a negative effect occurs with the GCC plant.
- → Use of environmental resources (air, water, land): The indicators show a heterogenic pattern.
 - highest air usage attributed with PV systems tracing back to production processes,
 - highest water usage attributed with the GCC plant, tracing back to the natural gas chain,
 - highest indirect land use associated with the onshore wind facility, caused by visual impact on the environment,
 - highest direct land use associated with PV system.

RUHR - UNIVERSITAT BOCHU

