

25th Annual North American Conference of the USAEE/IAEE Fueling the Future: Prices, Productivety, Policies and Prophecies September 18-21, 2005 Optimal carbon abatement policy - taxes should be high now!

Lise-Lotte Pade, AKF Mads Greaker, SSB

Outline

- Background
- Our plan
- Model
- Scenarios
- Preliminary results
- Future research

www.akf.dk

Background

- Induced Technological Change (ITC)
 - climate policy affect the incentives to conduct research within energy technologies
 - taxing carbon based energy will decrease demand for these types of energy and increase the demand for less carbon intensive energy types
 - as the demand for those energy types rises it is plausible to assume that more intensive research will be conducted within these area

Background

Former research

- the effect of ITC on the optimal carbon abatement policy – taxation and reduction path
- Nordhaus, 2002, Popp, 2004, Gerlagh and Lise, 2005, Zwaan ea., 2002, and Goulder and Mathai, 2000
- assumptions/analyses
 - exogenous vs. endogenous/induced technological change – either or?
- findings
 - lower taxation path
 - postpone reduction?

Our plan

- What we intend to do...
 - Set up a theoretical model
 - inspired by Romer, 1990
 - analyse how the optimal taxation path is affected under different assumptions of
 - endogenous/induced technological change
 - compared to

exogenous technological change

- Energy sector
- Carbon abatement technology producer
- R&D sector
- Energy demand
- Social planner

- Energy sector
 - one representative energy producer
 - faces a CO₂ emission tax
 - BAU CO₂ emissions proportional to energy production
 - reduces CO₂ emission by buying abatement technology
 - decreasing returns to each type of abatement technology

- Abatement technology producer
 - *N* different abatement technology producers
 - close substitutes, monopolistic competition
 - pays a fee to the R&D sector for renting the ideas

R&D sector

- abatement technology inventor
- costs of inventing increasing in the number of ideas within each period
- costs of inventing decreasing in the total number of ideas in the economy
- sets a fee equal the net present value of profits from the technology

- Energy demand
 - linear demand function
- Concentration
 - change in concentration given by the emissions minus a constant decay rate

Model

- Energy producer
- Energy producer Emissions $e_t = q_t \sum_{i=1}^{N_t} (u_t^i)^{\rho}, \rho < 1$
 - Energy production costs

 $c_t(q_t, u_1^i, ..., u_t^n) = c_0 q_t + \tau_t(q_t - \sum_{i=1}^{N_t} (u_t^i)^{\rho}) + \sum_{i=1}^{N_t} p_t^i u_i^t$ • Abatement equipment demand $\mathbf{u}_{t}^{i} = \left(\frac{\tau \rho}{p^{i}}\right)^{1-\rho}$

www.akf.dk

- Abatement equipment
 - profit maximisation

 $\max_{\tau} \pi^i_t = p^i_t u^i_t - b^i u^i_t - f^i$

• supply

$$u_i^i(\tau) = \left(\frac{\tau \rho^2}{b^i}\right)^{\frac{1}{1-\rho}}$$

R&D sector

- technology development costs $a(n_t, N_t) = \alpha_1 e^{-\alpha_2 N_t} (n_t)^2$
- the fee equals the total expected profit $\mathbf{f}^{i} = \int_{\infty}^{\infty} \pi_{t} e^{-rt} dt$

$$n_{t} = \eta e^{\alpha_{2}N_{t}} \int_{0}^{\infty} \left[\tau^{\frac{1}{1-\rho}} \right] e^{-rt} dt$$

www.akf.dk

Model

- Solving the model
 - the social planner maximises Total Surplus
 - wrt. the carbon tax
 - given a CO₂ concentration target
 - Total Surplus is given by
 - consumer surplus
 - energy producer surplus
 - emission tax income
- The model is solved numerically using the program GAMS

Scenarios

- Endogenous technological change
 - solving for the optimal taxation path
 - deriving the development in the technological change:

Period	1	2	•••	Т
τ_t	τ_1	$ au_2$		τ _T
$n_t(\tau_t)$	$n_1(\tau_1)$	$n_2(\tau_2)$		$n_{T}(\tau_{T})$
$N_t(\tau_t)$	$N_1(\tau_1) = n_1(\tau_1)$	$N_2(\tau_2) = N_1(\tau_1) + n_2(\tau_2)$		$N_T(\tau_T) = N_{T-1}(\tau_{T-1}) + n_T(\tau_T)$

- Exogenous technological change
 - implementing the development in the technological change as exogenous and solving for the optimal taxation path

Preliminary results

- Only ITC:
 - taxes should be high in the beginning
- Compared to exogenous technological changen
 - taxes should be higher in the beginning under ITC compared to exogenous technological change
- Intuition behind the results:
 - Goulder and Mathai
 - exogenous technological growth
 - affects the future development of ITC
 - We have future external effects of R&D today

Future research

- Knowledgde accumulation
 - Fishing out rather than standing on shoulders
- Subsidies
 - three possible sectors to subsidies
 - combined with taxes