Optimal carbon abatement policy
- taxes should be high now!

Lise-Lotte Pade, AKF
Mads Greaker, SSB
Outline

- Background
- Our plan
- Model
- Scenarios
- Preliminary results
- Future research
Background

- Induced Technological Change (ITC)
 - climate policy affect the incentives to conduct research within energy technologies
 - taxing carbon based energy will decrease demand for these types of energy and increase the demand for less carbon intensive energy types
 - as the demand for those energy types rises it is plausible to assume that more intensive research will be conducted within these area
Background

- Former research
 - the effect of ITC on the optimal carbon abatement policy – taxation and reduction path
 - assumptions/analyses
 - exogenous vs. endogenous/induced technological change – either or?
 - findings
 - lower taxation path
 - postpone reduction?
Our plan

- What we intend to do...
 - Set up a theoretical model
 - inspired by Romer, 1990
 - analyse how the optimal taxation path is affected under different assumptions of
 - endogenous/induced technological change
 - compared to
 - exogenous technological change
Model

- Energy sector
- Carbon abatement technology producer
- R&D sector
- Energy demand
- Social planner
Model

- Energy sector
 - one representative energy producer
 - faces a CO$_2$ emission tax
 - BAU CO$_2$ emissions proportional to energy production
 - reduces CO$_2$ emission by buying abatement technology
 - decreasing returns to each type of abatement technology
Model

- Abatement technology producer
 - \(N \) different abatement technology producers
 - close substitutes, monopolistic competition
 - pays a fee to the R&D sector for renting the ideas
Model

- R&D sector
 - abatement technology inventor
 - costs of inventing increasing in the number of ideas within each period
 - costs of inventing decreasing in the total number of ideas in the economy
 - sets a fee equal the net present value of profits from the technology
Model

- Energy demand
 - linear demand function
- Concentration
 - change in concentration given by the emissions minus a constant decay rate
Model

- Energy producer
 - Emissions
 \[e_t = q_t - \sum_{i=1}^{N_t} (u^i_t)^\rho, \rho < 1 \]
 - Energy production costs
 \[c_t(q_t, u_1^i, ..., u^n_t) = c_0 q_t + \tau_t (q_t - \sum_{i=1}^{N_t} (u^i_t)^\rho) + \sum_{i=1}^{N_t} p^i_t u^i_t \]
 - Abatement equipment demand
 \[u^i_t = \left(\frac{\tau^i_t}{p^i_t} \right)^{\frac{1}{1-\rho}} \]
Model

- Abatement equipment
 - profit maximisation
 \[\max \pi_t^i = p_t^i u_t^i - b^i u_t^i - f^i \]
 - supply
 \[u_i^i(\tau) = \left(\frac{\tau \rho^2}{b^i} \right)^{\frac{1}{1-\rho}} \]
Model

- R&D sector
 - technology development costs
 \[a(n_t, N_t) = \alpha_1 e^{-\alpha_2 N_t} (n_t)^2 \]
 - the fee equals the total expected profit
 \[f^i = \int_0^\infty \pi_t e^{-rt} dt \]
 - determines
 \[n_t = \eta e^{\alpha_2 N_t} \int_0^\infty \left[\frac{1}{\tau^{1-\rho}} \right] e^{-rt} dt \]
Model

- Solving the model
 - the social planner maximises Total Surplus
 - wrt. the carbon tax
 - given a CO₂ concentration target
 - Total Surplus is given by
 - consumer surplus
 - energy producer surplus
 - emission tax income
- The model is solved numerically using the program GAMS
Scenarios

- Endogenous technological change
 - solving for the optimal taxation path
 - deriving the development in the technological change:

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_2</td>
<td>...</td>
<td>τ_T</td>
</tr>
<tr>
<td>$n_1(\tau_1)$</td>
<td>$n_1(\tau_1)$</td>
<td>$n_2(\tau_2)$</td>
<td>...</td>
<td>$n_T(\tau_T)$</td>
</tr>
<tr>
<td>$N_1(\tau_1) = n_1(\tau_1)$</td>
<td>$N_2(\tau_2) = N_1(\tau_1) + n_2(\tau_2)$</td>
<td>...</td>
<td>$N_T(\tau_T) = N_{T-1}(\tau_{T-1}) + n_T(\tau_T)$</td>
<td></td>
</tr>
</tbody>
</table>

- Exogenous technological change
 - implementing the development in the technological change as exogenous and solving for the optimal taxation path
Preliminary results

- Only ITC:
 - taxes should be high in the beginning
- Compared to exogenous technological change:
 - taxes should be higher in the beginning under ITC compared to exogenous technological change
- Intuition behind the results:
 - Goulder and Mathai
 - exogenous technological growth
 - affects the future development of ITC
 - We have future external effects of R&D today
Future research

- Knowledge accumulation
 - Fishing out rather than standing on shoulders
- Subsidies
 - three possible sectors to subsidies
 - combined with taxes