Does Uncertainty Matter? A Competing Risks Analysis of Investment in Petroleum Refining Industry

Xiaoyi Mu xiaoyimu@ou.edu

25th Annual North American Conference USAEE/IAEE

Outline

- Introduction
- Investment in the Refining Industry
- Measuring Uncertainty
- The Competing Risks Framework and Empirical Findings
- Conclusion

The only thing certain is that uncertainty will remain.

- Energy Economics Examples
 - When natural gas price increases, drilling activity may not follow.
 - When refining margin rises, investment in the refining industry may not increase (as it is NOW).
- Policy Implications
 - The effectiveness of policies designed to influence investment may be affected by uncertainty.

- A hot debate in the literature
- Theories have contradictory predictions
 - Positive
 - Hartman (1972), Abel (1983), Abel and Eberly (1994).
 - Negative
 - McDonald & Siegel (1986), Pindyck (1988), Dixit and Pindyck (1994)
 - Positive for perfect competition, negative for oligopoly. Caballero (1991)

- Empirical evidence
 - General consensus using macro data
 - Less conclusive using micro data
- Two challenges to empiricists
 - How should uncertainty be captured?
 - How should the economic value of capital and investment be measured?

- Accounting data rarely allows a researcher to correctly measure the economic value of capital.
 - Economic depreciation rate
 - Many investments are for replacement

"The empirical investment literature is full of disappointments. ... There are at least as complex, and perhaps insurmountable data problems. Both right- and left-hand side variables are seldom measured properly."

---- Caballero, Engle and Haltiwanger (1995)

- This paper confronts these problems by studying investment in the refining industry.
 - Construct uncertainty measures from forward refining margins
 - Use capacity change to measure investment rather than relying on account data

Aggregate Investment

Fraction of Investment

Refinery Capacity Change Distribution

Total number of observations (refinery-year): 3324. The far left bar (-1) represents complete shut-down refineries.

Distribution of Durations between Two Capacity Changes

Duration1: Years of duration between two capacity changes with zero threshold. Duration2: Years of duration between two capacity changes with 5% threshold.

Measuring Uncertainty

- Uncertainty is subject to investors' mental judgment about the distribution of future returns.
 - Forward-looking
 - Corresponds to future profitability
 - Subjective
- We construct uncertainty measures from forward refining margins.
 - Ma (1989): On average futures markets outperform econometric (time series) models for all the three petroleum commodities.
 - Fujihara and Mougoue (1997): Petroleum futures markets are weak form efficient.

Measuring Uncertainty

Daily forward refining margin

$$FRM_t = 2*F_{GO}^{T,t} + 1*F_{HO}^{T,t} - 3*F_{CO}^{T,t}$$

Daily close price of NYMEX with 6 months maturity

Annual Margin

$$Margin = \left(\sum_{i=1}^{N} FRM^{t}\right)/N$$

and
$$Uncertainty = \sqrt{\frac{\sum_{n=1}^{N} (FRM^{t} - MARGIN)^{2}}{N-1}}$$

Where N is the number of trading days in a year.

Forward Refining Margin and Uncertainty Measure

The Competing Risks Framework

- Focus on the effect of uncertainty on the timing of investment.
- Hazard: the conditional probability that a refinery will invest or disinvest given it stays in inaction until t
 - Survival variable: Duration of a refinery staying in inaction
 - Two competing risks: investment and disinvestment
 - Proportional hazard
 - Shared frailty

$$\lambda(t, x, \beta, \lambda_0) = \exp(x'\beta)\lambda_0(t)\nu$$

The Competing Risks Framework

Baseline hazard: Weibull

$$\lambda_0(t) = \rho t^{\rho-1}$$

- \bullet $\varrho > 1$, positive duration dependence.
- $= \varrho = 1$, constant hazard, no duration dependence.
- $\blacksquare \rho < 1$, negative duration dependence.
- Other control variables
 - Capacity utilization rate
 - Ownership change
 - Dummy for small refineries

Estimation Result with 5% Threshold

	Investment	Disinvestment
Margin1	0.187*	-0.192
	(0.104)	(0.148)
Uncertainty1	-0.543***	-0.707**
	(0.207)	(0.354)
Urate	-0.012	-0.069***
	(0.010)	(0.016)
Ownchg	-0.036	0.007
	(0.205)	(0.331)
Small	-0.406***	2.248***
	(0.157)	(0.299)
ρ (H ₀ : ρ=1)	1.187***	1.505***
	(0.060)	(0.116)
LR test (H0: θ =0)	16.65***	12.03***
No of spells	546	288
Log likelihood	-694.48	-319.68

Estimation Result with 5% Threshold

	Investment	Disinvestment
Margin2	0.267***	0.025
	(0.102)	(0.143)
Uncertainty2	-0.822***	-0.679*
	(0.266)	(0.411)
Urate	-0.011	-0.067***
	(0.010)	(0.016)
Ownchg	-0.064	-0.030
	(0.205)	(0.331)
Small	-0.412***	2.312***
	(0.159)	(0.303)
ρ (H ₀ : ρ=1)	1.209**	1.521***
	(0.060)	(0.113)
LR test (H0: θ =0)	18.23***	13.68***
No. of spells	546	288
Log likelihood	-692.91	-322.00

Estimation Result with 5% Threshold

	Investment	Disinvestment
Margin ²	0.268***	0.024
	(0.102)	(0.143)
Uncertainty2	-0.695**	-1.351***
	(0.277)	(0.461)
Urate	-0.012	-0.066***
	(0.010)	(0.016)
Ownchg	-0.082	0.025
	(0.205)	(0.333)
Small	-0.488***	2.732***
	(-2.92)	(0.326)
Integ*Uncertainty2	-0.359	1.687***
	(0.244)	(0.390)
ρ (H ₀ : ρ=1)	1.211***	1.530***
	(0.06)	(0.113)
	17.54***	13.20***

Conclusion

- Uncertainty measures have a significantly negative impact on refiners decision to invest.
 - Robust to investment thresholds and uncertainty measures.
 - Support theories emphasizing irreversibility.
- Main contributions
 - Uncertainty measures
 - Constructed from forward market
 - Reflects uncertainties in both I/O prices
 - Capacity changes to measure investment episodes.
 - Investment episodes are lumpy, supportive of nonconvex costs of K adjustment.