COALBED METHANE--A NON-CONVENTIONAL ENERGY SOURCE

WHAT IS IT AND WHY IS IT IMPORTANT

ROBERT A. LAMARRE LAMARRE GEOLOGICAL ENTERPRISES

Fueling The Future

25th Annual North American Conference of the USAEE/IAEE

Sept. 20, 2005

Natural Gas Production, Consumption, and Imports, 1970 - 2025 (trillion cubic feet)

Major Growth in Production from Unconventional Resources

- Tight Gas 2.3 bcfd in 2004 to 4.1 bcfd in 2010
- CBM 1.8 bcfd in 2004 to 3.9 bcfd in 2010
- Conventional Gas 2.5 bcfd in 2004 to 2.3 bcfd in 2010

Wood Mackenzie Woodmac.com

RATIO OF HYDROGEN (H) TO CARBON (C) FOR GLOBAL PRIMARY ENERGY CONSUMPTION SINCE 1860 & PROJECTIONS FOR THE FUTURE

Why Natural Gas? Efficiency

More New Baseload Electric Plant Costs

...combined cycle gas technology is still the preferred choice

Source: ExxonMobil; Deutsche Bank

NATURAL GAS IS A CLEAN BURNING FUEL

PREFERRED ENERGY SOURCE

COAL-FUELED ELECTRICITY-GENERATING PLANT AND CBM WELL IN UTAH

METHANE GAS PRODUCED FROM UNDERGROUND COAL BEDS

COALBED METHANE IS FORMED DURING THE CONVERSION OF PEAT TO COAL

Coal is formed from peat over time by heat and pressure

PEAT SWAMP

ALL Consulting 2/04

Picture 28

Cast of an in-situ tree rooted in the Jagger Seam and encased in the crevasse splay deposit that terminated peat deposition in the swamp in the Black Warrior Basin, Alabama. (Picture by Walter Ayers, S. A. Holditch & Associates, Inc., College Station, Texas; shown are William Kaiser (left) and Richard Winston.)

GAS CONTENTS OF VARIOUS ROCKY MTN. BASINS

CBM HAS BECOME AN IMPORTANT SEGMENT OF US GAS PRODUCTION

U.S COALBED METHANE PROVED RESERVES, 1989-2003

Source: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1989 through 2003 annual reports, DOE/EIA-0216.

U.S. CONTAINS 703 TCF OF CBM RESOURCES

U.S. CBM RESOURCES

- Greater Green River Basin
- Piceance Basin
- San Juan Basin
- Powder River Basin
- Uinta Basin
- Raton Basin

TOTAL

314 Tcf 99 Tcf 50 Tcf 30 Tcf 10 Tcf 10 Tcf

513 TCF

Meissner

CBM IN U. S. LOWER 48 STATES

- 13 TCF PRODUCED
- 18.7 TCF PROVED RESERVES
- 42.3 TCF ECONOMICALLY RECOVERABLE
- 101.2 TCF UNDISCOVERED
- 703 TCF TOTAL RESOURCE ESTIMATE
 - >14,000 WELLS
 - 1.6 TCF PRODUCED IN 2003
 - >10% OF U.S. NATURAL GAS PRODUCTION

GAS IS ADSORBED ON INTERNAL SURFACES OF COAL

3' 1 TON OF COAL CONTAINS 1 BILLION SQ. FT. OF INTERNAL SURFACE AREA

Picture 1 Cleats in a coal exposure of the **Cretaceous Fruitland** Formation in the Star Lake area, southern San Juan Basin, New Mexico. Note the termination of the cleats at a tonstein parting (few exceptions). Both face and butt cleats are well-developed and the butt cleat is iron-stained. (Picture by Walter Ayers, S. A. Holditch & Associates, Inc., College Station, Texas.)

ADVANTAGES OF COALS AS RESERVOIRS

- Large gas storage capacity
- Shallow depths
- Relatively low cost
- Very good economics
- Most coal basins have been mapped
- Abundant data from logs of older wells

PRODUCTIVE STAGES OF A COALBED METHANE WELL

TYPICAL PUMPING UNIT ON A CBM WELL

Exh. #9 COMPARISON OF GAS PRODUCTION CURVES

New technologies improve the time to first production of coalbed methane after the sands in a CBM well begin to play out.

Schwochow, Oil & Gas Investor Supplement Coalbed Methane, Dec. 2003, page CBM-11

EXAMPLE OF SUCCESSFUL DRUNKARD'S WASH CBM PROJECT

From Sproule

3

NUMBER OF WELLS AND DAILY PRODUCTION VERSUS TIME IN POWDER RIVER BASIN

No. of Wells vs Time

MMcfd vs Time

www.eia.doe.gov/

CBM PRODUCTION IN UTAH

Thru April

THE CRETACEOUS SEAWAY CONTAINS THE CBM PROJECTS IN THE ROCKIES

RYER, 1988

TYPICAL COAL DEPOSITIONAL ENVIRONMENT FOR CRETACEOUS ROCKS IN THE ROCKIES

Picture 13

Cyprus trees within the Okefenokee Swamp, Georgia. Note stumps of older trees and succession by younger trees. (Picture courtesy of John Balsley, Consultant, Indian Hills, Colorado.)

. . . .

MAJOR COAL-BEARING BASINS IN THE ROCKIES

Natural Resources Law Center 7/02

www.wsgsweb.uwyo.edu/

COAL-BEARING AREAS IN THE FOUR CORNERS REGION

USGS PP1625B, 1999 Kirschbaum et al

COAL-BEARING CRETACEOUS FORMATIONS

10,000 FEET

Horne, RMAG 2003

TUNUNK SHALE MEMBER

PRODUCTIVE COAL SEAMS IN THE VERY SUCCESSFUL FERRON CBM PLAY OF EAST-CENTRAL UTAH

SCHEMATIC CROSS SECTION MESAVERDE DEPOSITIONAL SEQUENCE

AN IDEAL "GAS MACHINE"

After Jackson in Hollenshead and Pritchard

THE FUTURE LOOKS BRIGHT FOR CBM

ANCIENT SWAMPS

COALBED METHANE

ENERGY SUPPLY AND

