Improving Energy Infrastructure Security: Costs and Consequences

Alex Farrell¹,Hisham Zerriffi², Lester Lave², Granger Morgan²

¹Energy and Resources Group, UC Berkeley ²Dept. of Engineering and Public Policy, Carnegie Mellon University

26th Annual Conference of the International Association for Energy Economics Prague, Czech Republic June 7, 2003

Part 1: Thinking about *Stress* in the Electric Power Sector

- Definition
 - Deliberate attack to create panic and political pressure
 - Other socially-created conditions that are not captured by traditional ideas of 'reliability'
- NOT
 - Price shocks in international oil markets
 - Routine equipment failures
 - Weather-related outages
 - "Guards, gates, and guns"

Stress

• Define

- Conditions outside of "typical" reliability planning assumptions.
- Examples
 - Localized direct conflict damage (e.g. Columbia, or the U.S.)
 - System-wide direct conflict damage (e.g. Bosnia)
 - Inadequate investment/maintenance (e.g. India)
 - Incomplete institutional arrangements (e.g. Palestine)
- Literature
 - scarce

Reliability

- Restoration of power supply from single-point failures under well-defined conditions
- OECD power systems are *extremely* robust in the face of weather and equipment failures
- Great Northeast Blackout of 1965
- Southern Ontario ice storm of 1998
- 2000 North American Reliability Council (NERC) major incidents
 - 26 due to weather (mostly thunderstorms)
 - 12 operator error or maintenance error
 - 12 equipment failures
 - 2 forest fires (largest NM, 660,000 people, <4 hours)

Stress is not Weather

- Repeated
- Threats to repair personnel
- Focused on damaging crucial infrastructure
 - Transformers
- High-hazard facilities
 - Dams and locks
 - Nuclear power plants (spent fuel)
 - Cooling towers
 - Electro-magnetic pulse
- Cyber attacks on electronic data collection and control systems (SCADA)
 - Internet-based
- Insider attacks

Institutions for reliability

- Reliability and security are both public goods role for government
- Institutions that promote reliability
 - State-owned enterprises
 - State public utility commissions
 - Monopoly franchise incentives for transmission investment
 - NERC
 - EPRI
 - NRC
 - 1999 review: "significant weaknesses" in 27 of 57 facilities
 - Red Team exercises: staff are briefed about timing and detailed plans
 - Nuclear industry pushing for 'self-regulation'

• What are the institutions that will promote security?

Failure in complex, engineered systems

- Complex systems seem to have more large-scale disruptions than a normal distribution, or even a log-normal distribution, would suggest.
- Failure detection in an unbounded system (incompletely observed) may be slow and difficult.
- Suggests that the only strategy it to accept that vulnerabilities will always exist, that failures (even large ones) will always occur.
- Non-storability and system balancing in electric power systems make this even more problematic

Survivability offers a coherent framework

Carnegie Mellon University

Software Engineering Institute

Survivability is the ability of a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents.

Source: Howard Lipson, SEI

Survivability

- Fundamental assumption: No individual component of a system is immune to all attacks, accidents, and design errors.
- Goal: The <u>mission</u> must survive, not any individual component, not even the system itself.
- Contrasts with the 'fortress' model of system security failures can be catastrophic
- Survivability is an *emergent property* of a system.
- Contrast to "fortress" model

Example – Traffic Lights

- Major problem during blackouts: traffic accidents
- Backups available
 - LED lights, solid-state switches, batteries
- "Fortress-type" thinking:
 - Blackouts will not occur, so don't plan for operation during them
 - All loads on the same circuit
 - Blackouts lead to accidents and create gridlock for police, etc.
- Survivability thinking:
 - Recognize: open breakers upon power failure
 - Adapt: operate on battery power
 - Recover: re-connect when power is restored.
- But who pays?

Restructuring

- Changes (reduces mostly) the role of many reliability institutions
- Incomplete restructuring makes incentives for investment in transmission system unclear
- May result in poor incentives for transmission investment
- Data sharing is problematic
- Key issue WHO PAYS FOR SECURITY?
- Must be resolved before security issues can be resolved.

Part 2: Analysis of Stress

- How do different system architectures affect reliability and survivability?
 - Large central generation
 - Distributed generation
- How do sensitivities change?
- What are the costs?
- Possible advantages of DG
 - Law of large numbers in generation
 - Less reliance on electricity T&D
 - Fuel switching
 - Advantages of gas T&D
 - Underground
 - Storage
 - Operational simplicity

Method

- Stochastic reliability model using IEEE Test System
 - Modify to include DG
 - Modify to represent stress (Stress Adjustment Factor SAF)
- Cost model to estimate the costs of energy supply, outages

- Gas T&D
- Mixed architectures
- Heterogeneity of local loads
- Power flows

System Architectures

Scenario	Number of	Unit Sizes	Total	Capacity
	Units	(MW)	Capacity	Reserve
			(MW)	(percent)
C (Centralized System)	32	12-400	3,405	19.5
DG0 (Minimum System)	5700	0.5	2,850	0
DG5	5985	0.5	2,992	5
DG10	6270	0.5	3,135	10
DG15	6555	0.5	3,277	15
DG20 (Match Centralized)	6840	0.5	3,420	20

Loss of Energy Expectation

Cost of Electricity

Thanks to

- UC Berkeley, Committee on Research
- Carnegie Mellon Electricity Industry Center

www.cmu.edu/electricity

References

- Farrell, Lave and Morgan (2002) "Bolstering the Security of the Electric Power System" *Issues in Science & Technology*.XVIII(3):49-56. Spring
- Lipson and Fischer (1999) "Survivability-A new technical and business perspective on security" Proceedings of the New Security Paradigms Workshop. Caledon Hills, ON: ACM
- Zerriffi, Dowlatabadi and Farrell (2002) "Electricity and Conflict: Advantages of a Distributed System" CEIC Working Paper 02-01.
- Cowart (2002) "Electrical Energy Security: Policies for a Resilient Network" Montpelier, VT: Regulatory Assistance Project. 7.