Assessing the impacts of shutdown of TEPCO's nuclear reactors on CO_2 emission in the Japan's electricity sector

Shuichi Ashina Toshihiko Nakata Tohoku University, Japan

> 23rd IAEE North American Conference, Mexico City, Mexico. October 19-21 2003

Background

Electricity generation in Japan

Can power supply stability be assured? How much operation cost rise? How much CO_2 emission increase?

Nuclear power stations in Japan

Number of nuclar power plants: 52 Total installed capacity of nuclear power plants: 45,617 MW

Purpose

- Analyze the impacts of shutdown of nuclear power plants at Tokyo Electric Power
 Company (TEPCO) on energy systems in Japan.
- Evaluate electricity supply security, operation cost and CO₂ emission.

Methodology of the analysis

- Consider the site of power plants and the distribution of regional electricity consumption.
- Separate Japan into sixty regions.
- Include transmission grids and its capacity limits.

Schematic structure of the Multi Node Model

Objective function

 $\min TC = \sum (V(P,T,R))$ P,T,R

- TC: Total Operation and maintenance cost.
- P: Pattern (1-7).
- T: Time (1-24).
- R: Region (1-60).
- V: Operation and maintenance cost
- Operation and maintenance (O&M) costs are considered according to amount of dispatches.

Demand patterns Demand pattern Days in a year A Maximum demand days in 3 Summer Weekdays in Summer 98 B C Weekdays in Winter 95 Weekdays in Spring and Autumn 97 Holidays in Summer 21 E F Holidays in Winter 26 Holidays in Spring and Autumn G 25

Analyzed scenarios

- Business as Usual scenario (BAU scenario)
 - All 17 nuclear power plants at TEPCO are in operation.
- Shutdown scenario
 - Shutdown of all nuclear power plants at TEPCO.

Result: Changes in electric generation in Japan

BAU

Shutdown

Result: Mixture of power sources at pattern A (Shutdown case)

Result: Changes in electric generation in TEPCO and Tohoku

Result: Annual operation cost

Result: Annual CO_2 emission in the electricity sector

Results

- The shutdown of nuclear power plants at TEPCO has following impacts:
 - Electricity supply stability is assurable.
 - Electricity generation of coal-fired boiler and LNG-fired boiler in both TEPCO and Tohoku (next to TEPCO) increases.
 - Annual operation cost rises 13 %.
 - CO₂ emission in Japan's electricity sector increases from 102 mmTC to 117 mmTC.

Interconnection capacities and peak loads in the year 2001

$CAPLO(P,T,RP) \le POW(P,T,RP) \le CAPUP(P,T,RP)$

- P: Pattern (1-7).
- T: Time (1-24).
- RP: Region (1-60).
- POW: Electricity generation.
- CAPUP: Upper limit of generation.
- CAPLO:Lower limit of generation.

Supply constraint of electricity

$$\sum_{R} \left(X(P,T,R) - S(P,T,R) \right) = \sum_{R} D(P,T,R)$$

- R: Region (1-60).
- X: Supply of electricity.
- S: Supply to the pumped hydropower plant.
- D: Electricity demand.

Constraints of load-following capability

$POW(P,T,RP) \le FUP(RP) \times POW(P,T-1,RP)$ $POW(P,T,RP) \ge FLO(RP) \times POW(P,T-1,RP)$

FUP: Upper limit of load-following capability.

FLO: Lower limit of load-following capability.

Constraint of transmission capacity

$TRANS(P,T,R_1,R_2) \leq TRUP(R_1,R_2)$

TRANS: Transmission power from region R_1 to R_2 .

TRUP: Upper limit of Transmission capacity from region R_1 to R_2 .

Nuclear power plants at TEPCO

- Total installed capacity of nuclear power reaches 17,308 MW.
 - The capacity corresponds to 38.8 percent of total installed capacity of nuclear power in Japan.
- All of this nuclear power plants has suspended operations at April 14, 2003.
- TEPCO has restarted 8 reactors, which capacity is 8,680 MW.

Assumptions of the analysis

- Power generation plants include:
 - Nuclear
 - Thermal power (coal-fired boiler, LNG-fired boiler, LNG combined cycle, oil-fired boiler)
 - Hydropower (conventional, pumped).
- Electricity transmission is supposed to lose 1% of its power per 100km.
- The capability margin of electricity supply is set at 8%.

Characteristics of power plants

	Capital cost ¹ (\$/kW)	Fixed O&M ¹ (cents/kW-yr.)	Variable O&M ¹ (cents/kWh)	Fuel cost ¹ (cents/kW h)	Thermal efficiency ² (H.H.V.) (%)
Nuclear power	2,950	2.84	0.042	1.26	32.10
Coal-fired	2,167	2.36	0.338	2.08	38.98
Oil-fired	1,667	1.37	0.010	5.83	37.04
LNG-fired	1,583	1.44	0.010	5.48	38.13
LNG combined	1,000	1.53	0.052	4.73	43.27
Hydropowered pumping	5,000	8.33	0.000	0.00	None
Conventional hydropower	2,500	2.50	0.000	0.00	None

¹Federation of Electric Power Companies. (2003). Handbook of electric power industry, Japan Electric Association, Tokyo. ²Thermal and Nuclear Power Engineering Society. (2003). *The Thermal and Nuclear Power*, Thermal and Nuclear Power Engineering Society, Tokyo.

Result: CO₂ emission in TEPCO and Tohoku

